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FOUNDATIONS OF

THE PRINCIPAL ELEMENTS REGRESSION STRUCTURE

Abstract

by

Kevin Dale Brunson

This dissertation makes three important contributions to econometrics. 

First, principal elements regression (PER) is shown to be the more general 

case of such existing procedures as factor analysis, principal components 

regression (PCR), ordinary least squares (OLS), ridge regression, and some 

forms of restricted least squares. Second, it introduces three new PER 

estimators as well as PER versions of existing estimators such as the 

Mundlak pre-test type and the Stein-rule type. And third, it critiques and 

refines the correlated notions of the rank of a matrix and the number of linear 

restrictions on a matrix.

Theoretically, an estimation procedure is derived that offers an 

improvement over the unbiased least squares and biased principal 

components estimators when the performance criterion of an estimator is 

variance reduction subject to orthogonality and dimension constraints. 

Specifically, with an equal or smaller number of eigenvector values (partial 

or fractional dimensions) deleted, the trace of the variance-covariance matrix
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of the principal elements estimator is shown to be less than or equal to the 

trace of the variance-covariance matrix of the principal components 

estimator; it is already widely known that the trace of the variance- 

covariance matrix of the principal components estimator is less than or equal 

to the trace of the variance-covariance matrix of the least squares estimator 

(Fomby, Hill, and Johnson, 1978).

It is also widely known that shrinkage estimators of the Stein-rule type 

dominate least squares in certain regions of the parameter space under 

quadratic risk loss functions. This work debuts several principal elements 

versions of shrinkage estimators and links them to such popular Stein-rule 

techniques as the positive-part Stein-rule and the limited translation Stein- 

rule. Further, the PER method is motivated on the same grounds as Stein's 

limited translation rule.

The performances of the principal elements estimators and their 

various competitors are evaluated in monte carlo simulations performed on 

a classical data set and a pseudorandom population using a squared error 

risk function and an analysis of probability densities.
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CHAPTER 1

INTRODUCTION

Selecting the 'best1 statistical model to solve a prediction or 

explanation problem via regression techniques involves choosing from a 

host of approaches even if the researcher has previously framed the 

problem in the correct theoretical context, therein narrowing the possible 

choices. For instance, a multiple regression problem where multicollinearity 

exists is the status quo for economic data and not the exception. Foregoing 

the issue of quantifying the degree of multicollinearity and, thus, its 

seriousness, a first decision might be whether or not to use a biased 

estimator or an unbiased estimator. If the choice is an unbiased estimator 

like least squares then the correct variables for inclusion still have to be 

determined--a nontrivial problem since a least squares model with 

additional irrelevant variables will still be unbiased. And in the presence of 

multicollinearity the experimenter must also be aware of the shortcoming of 

unreliable individual parameter estimates1. Further, even if least squares is 

chosen, if data is scarce there remains the complex problem of what data to 

use to calibrate the model (in-sample) and what data to use to make

1 W hether the goal is the ‘best* explanatory model (perhaps for policy planning) or the ‘best* 

forecasting model, the reliability of the model decreases a s  the sam ple estim ates depart from 

the true plane of collinearity.

1
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predictions (out-sample). Fomby and Hill (1989) demonstrated the uncertain 

effect on prediction error of differing collinearity structures in the two data 

subsets. Obviously, using the same data to both derive least squares 

parameter estimates and then to make predictions generates selection bias 

(see Miller, 1990). The term selection bias will be explained further in 

Chapter 5.

Ignoring epistemological concerns about the biased/unbiased 

schism, a researcher who opts for a biased estimator such as principal 

components would then be confronted with myriad decisions. A short list 

would include decisions about the number of components to replace with 

zeroes2, whether to employ shrinkage (such as Stein-rule) versions of 

principal components, and the appropriate loss function. There is a plethora 

of ad hoc rules on zeroing components; notable among those are pre-test 

rules employing F-tests and zeroing components where the corresponding 

eigenvalue is less than one (see Jackson (1991) for a comprehensive 

treatment of the most popular ones). Similarly, there is a menu of dozens of 

Stein-rule and other shrinkage estimators from which the researcher can 

choose as well as many loss functions besides quadratic forms.

Returning to the point I am trying to make, a point which is by no 

means profound or mystical, the analyst should be overwhelmed by the 

numerous regression techniques and encumbrances even if the model 

being considered is the result of cogent reasoning! Suppose an estimator

^Throughout this work the action of replacing an element of a  matrix or vector with a  zero will 

be termed "zeroing.* The commonplace term "deleting", used when an entire component is 

dropped, prevents adoption of a  fractional reduction strategy when individual elem ents of the 

component vector are  not removed.

2



www.manaraa.com

proposes to replace some of the elements of the eigenvector matrix with 

zeroes. Completeness necessitates allowing for all possible combinations 

of elements. That is, having decided upon some number to replace, 

perhaps by forward inclusion or backward deletion, the technique should 

consider reinstating some before definitely deciding to zero more. In 

principal components the number of components is given by the number of 

explanatory variables, so if X  is an N  x  K  matrix of explanatory variables 

then there are K  candidates for deletion. Letting r represent the number of 

retained components, then the number of possible combinations is given by

i c K = i  -  2k - 1rt ,  ' " ,(A : -  r) ! ( r ) ! Z *'

subtracting one because the case of zeroing all of the elements is not 

viable3. In the principal elements case, there are K 2 eigenvector elements 

to select from because each principal component is composed of K  

principal elements. So the choice becomes unwieldy, but not impossible, for 

values of K  as it approaches 10. When K  = 10 there are 1023 principal 

components combinations and 1.2677 x 103° principal elements 

combinations. Particularly over the past two decades, insightful minds have 

conjured a cascade of biased and unbiased estimators that need to be 

corralled. The economics profession, where 10 explanatory variables is 

often a  simple case, and any others that employ multivariate regression can

3 Note that the instance that all elements are retained Is the ordinary least squares result. 

Hence, OLS is a  special case  of PER.

3
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benefit from a unifying structure such as principal elements. Indeed, the 

principal elements structure provides a context to consolidate them.

Even though multicollinearity is only one undesirable characteristic of 

sample data, it attracts significant amounts of research because its affects 

are so difficult to mitigate. Among attempts to measure it are the condition 

number, variance inflation factors, and the rank of a  matrix; still, there is no 

single measurement method which is unarguable.

However, it is known that multicollinearity can inflate variances so 

researchers focus on the manifestation of multicollinearity as embodied in 

loss functions such as quadratic risk. This dissertation takes that same turn 

and uses minimum mean squared error as one basis for estimator 

comparison. So, here multicollinearity serves as a  point of departure and 

not a feature.

The principal elements framework in this work advances econometric 

analysis by introducing new statistical models, altering the way information 

is utilized, and suggesting better ways to judge the performance of 

competing estimators.

The remainder of this dissertation will unfold as follows. A review of 

the literature focusing principally on the developments of the past two 

decades is in Chapter 2. Chapter 3 contains the main body of theoretical 

material that explains the principal elements structure, analyzes Mundlak- 

type rules, and explores a few versions of shrinkage estimators. Next, 

Chapter 4 presents the subject in an easy to visualize pictorial fashion. 

Chapter 5 continues by explaining the conduct of the monte carlo 

simulations before Chapter 6 reports the results of those experiments.

4
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Finally, Chapter 7 concludes the dissertation and suggests topics for future 

research.

5
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CHAPTER 2

LITERATURE REVIEW

Although there are some overlaps, the pertinent literature can simply 

be divided into that which primarily involves principal components 

regression and that which primarily involves shrinkage rules.

Fortunately, the principal components literature has been 

summarized recently by both Jackson (1990) and Oksanen (1988). 

According to Oksanen, principal components can be divided into three 

strands--(l) data-descriptive, (2) estimation of the classical linear model, and 

(3) factor analysis; the first two are significant for my purposes. Jackson's 

book is a "how-to" manual that tends to emphasize the first strand and also 

serves as a guide on the evolution of principal components techniques but 

not theory. Since, as pointed out by Jackson, the literature on principal 

components is fragmented yet profuse in the past two decades, I will rely on 

his efforts to pull together this diverse activity.

Principal components has its origins with Karl Pearson in 1901 

although today's form was first put forth by Hotelling in 1933. Expansion and 

adoption accelerated when more powerful computers were introduced in the 

1970's and subsequently authors such as Massy (1965), Chen (1974), 

Greenberg (1975), Fomby, Hill and Johnson (1978), Mundlak (1981), Lee 

(1986), and Hill and Judge (1987) made contributions to the theory of

6
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principal components. Within the family of principal components estimation 

rules Greenberg showed that zeroing components corresponding to the 

smallest eigenvalues brought the greatest reduction in the trace of the 

variance-covariance matrix of the estimated regression coefficients. Fomby, 

Hill and Johnson extended this optimality property to the entire class of 

restricted least squares estimators in the context of considering all possible 

linear restrictions on the regression coefficients. Simply put, these 

techniques substituted zeroes for selected values.

Lee's dissertation was a breakthrough in the evolution of principal 

components because it turned attention to the partial adjustment of each 

component, a technique he dubbed fractional principal components. He 

claimed that the fractional structure contained "all the plausible biased 

estimators useful in combatting (sic) multicollinearity." A reasonable 

corollary is to investigate the impact of a partial adjustment of the principal 

elements comprising each component. To date no one has examined the 

contribution to the variance reduction effort that can be made by alteration of 

the principal elements, an approach contained herein which admits Lee's 

family of estimators into the principal elements fold.

A technique which suggests weighting a matrix in the interval [0,1] 

might be connected to the group of shrinkage estimators such as the popular 

Stein-rule type first described by James and Stein (1961). In fact, Lee 

developed a Stein-rule estimator within the context of his fractional principal 

components. But there is an abundance of writings on the topic of Stein- 

rules, notable among them are Baranachik (1964), Efron and Morris (1973), 

Judge and Bock (1978), Stein (1981), Dey and Berger (1983), and Hill and

7
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Judge (1987). Judge and Bock (1978) consolidated existing literature up to 

the time of their publication and thoroughly examined a  number of Stein- 

rules and other shrinkage algorithms. More recently Judge and Yancey 

(1986) reported improved rules for estimating linear statistical models that 

included pretest types and Stein-rule types.

8
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CHAPTER 3

THEORY

3.1 The Principal Elements Structure 

Consider the standard regression model

y  = Xp  + e

where y  is a  t x 1 vector of dependent variable values, X is a t x  k 

matrix of explanatory variable values, ft is a k x 1 vector of regression 

coefficients, and e  is a t x  1 vector of independent disturbances with a 

common mean of zero and a common variance <72.

Note: Because of simplicity, in this section the theory is explained in terms 
of the extreme case when eigenvector elements are replaced with 
zeroes. Section 3.3 will explain that zeroing is merely a special case 
of shrinking elements until they are zero.

3.1.1 Principal Components Regression

Define Z  = XA where A is the matrix whose columns ay are the 

eigenvectors of the X'X matrix with the columns of A ordered to correspond

9
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to the ordered eigenvalues Ay where Xx > A2 >. . . > XK. The ordered 

eigenvalues Aj also serve as the diagonal elements in the K  x  K  matrix 

A . The ordinary least squares estimator of P  is

[3.1.1] p °  =(X'X)~l X'y = A(Z'Z)~l Z'y

By appropriately partitioning the Z and A matrices as Z = [ Z , : Z2 ] and 

A = [ A ,: A2 ] the principal components regression estimator may be 

expressed as

[3.1.2] p c = Ax(A{X'XAx) ' 1 A[X'y = AX(Z[ZX)~X Z[y 

when A2 is deleted or

[3.1.3] P c = AC( Z ' Z  )" ' Z'y ,

defining A c = [ Ax: 0 ] where A2 is replaced with a matrix of zeros. Of

course, since the principal components are orthogonal to one another, the 

least squares regression run on the reduced set of principal components Zx

is equivalent to the regression run on the full set of principal components Z 

with the unwanted results zeroed afterwards using the A c matrix. These 

results are equivalent to applying least squares to the model

y = X p  + e  = ZA'p  + e

10
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to minimize

e'e = y'y -  2 P'AZ'y + p'A/3

subject to the restriction ( A -  A C)'P  = 0.

The singular value and spectral value decomposition for the variance- 

covariance matrix of the least squares estimated regression coefficients are 

given by

K
C o v ( P ° ) = <t2 ( X ' X ) - 1 = <j 2AA~1A' = ct2 X t -aja' j

j = \

where

A =

A, 0 • • 0
0 A, :

0

In terms of the partitioned A matrix, the least squares covariance 

matrix may be expressed as

[3.1.3] C o v ( p ° )  = o 2AxK?A[  + G2A2A~2iAl

where A, and A 2 are defined in terms of the corresponding partitioning of 

the A matrix

11
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A =
A, 0 
0 A2

In contrast, the principal components covariance matrix can be written as

[3.1.4] C o v ( p c ) = ct2AcA_1Ac' = o 1AxK x A[.

3.1.2 Principal Elements Regression

If the ultimate objective is to define an estimator that has a  smaller 

mean squared error (MSE) than either least squares or principal 

components, first direct attention to the variance portion of MSE because 

that is the part that can more effectively be expressed and controlled.

Hence, interest is in a covariance matrix that has a  smaller trace than the 

trace of the P°  covariance matrix given as

t r \ C o v ( p ° )] = <r2 X  - a f j  = G2 [ v e c ( A ) ]  [ a -1 <8> l ] [ v e c ( A ) ]
« = 1 j = 1 Aj

where /  is a  k x  lc identity matrix. This trace may be thought of as the sum 
of k 2 terms (a,2 j k j ) which may be ordered from largest to smallest. PER

is defined by selecting the largest of these terms, then the next largest, and 
so forth, and setting the appropriate ay values in the original A matrix equal

O
to zero to form the A e matrix. An ordering (or ranking) operator is defined

12
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that creates a  k x  k matrix A whose elements are integer values reflecting 

this ordering of individual elements4.

The principal elements estimator becomes

[3.1.5] P e =  A e ( Z 'Z  )-1 Z'y = A eA'p°  .

This is equivalent to applying least squares to the model

y  = X p  + e = ZA'p + e  

/

subject to the restriction ( A -  Ae } P = 0.

3.1.3 Comparing the Covariance Traces 

Theorem 1:

1. The trace of the variance-covariance matrix of the principal 

elements estimator is less than or equal to the trace of the variance- 

covariance matrix of the principal components estimator with an equal 

number of eigenvector elements zeroed.

2. The trace of the variance-covariance matrix of the principal 

elements estimator is less than or equal to the trace of the variance- 

covariance matrix of the least squares estimator.

4S ee Appendix A.1 for an example of a  principal elements matrix and an ordering matrix A

13
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Proof:

The columns of the A matrix are already ordered according to the 

size of the corresponding eigenvalue (from the largest Xx to the smallest 

Xk). Designate the first r columns of A as Ax (columns to be retained) and 

the last d  columns of A as  A2 (columns to be zeroed). Define 

A =  [ A ®  I], dimension k x  k, and specify

where At is the rk x  rk diagonal matrix whose diagonal elements repeat 

each of the r  largest eigenvalues k times, and A2 is the dk x dk

diagonal matrix whose diagonal elements repeat each of the d  smallest 
eigenvalues k times (note: k = r + d  ). The trace of C w ( P ° ) may

then be expressed as

t r [ C o v ( p ° ) ]  = G 2 [vec (Ax)]  [AT* ][vec( Ax)]

+ G2 [vec (A2 )] [a~2 ] [ v <?c ( A 2 ) ]  .

The principal components estimator j5c has as the trace of its covariance 

matrix

[3.1.6] /r[C o v (j8 c )] = G2 [vec (Ax)]  [ A71 ][ vec( Ax)] .

14
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Now, recall the ordering operator that specifies the order of the
O

individual elements within the A matrix. This newly ordered matrix A is 

transformed into a vector with the elements of vec^A  j  ordered to put the

diagonal elements of

[ a -1 <8> / j [v e c  (-» )][ vec ( A ) ]

in order from largest to smallest down the diagonal. This results in

O 1 (  ° \ f  ° \A ® l vec\ A vec\ A

where A is the k x k diagonal A matrix with the diagonal elements of 
A reordered to correspond to the new ordering of the elements in the

O
new A matrix. The trace of the OLS covariance matrix may be expressed in 

terms of this new ordering as

[3.1.7] t r [ C o v ( p ° )] = a 7 vecl A
, - i

vec [ A

Next, partition the A matrix and, correspondingly, the A matrix as

O
A =

O O
A i : Ai and A =

O
Ai 0

O
0 a 2

15
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Under this new partitioning we get

t r [ C o v ( p 0 )] = a 2

+ c r

vec f  A\

vecl A 2

Ai -l vecl A\

A2-l vec
( t )

The trace of the covariance matrix for the principal elements estimator may 

then be expressed as

[3.1.8] t r [ C o v ( p e )] = a 2
( O

vecl A\ A i'1 (  ° vecl A\

Considering the relative size of the individual (aij2/Xj) elements, this 

covariance matrix clearly produces a trace smaller or equal to that provided 

by principal components regression when zeroing the same number of 

individual eigenvector elements. Therefore, the following inequalities follow 

directly:

[3.1.9] vec
( * )

Ai-l vecl A\

[3.1.10] a 1 vecl At A2-l (  0 \  vecyAt

16
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a 2 [vec (A 2 )]  [A 21][vec(A 2 )].

In terms of the A matrix as defined above, such that A e has the same 

ordered structure as the A matrix but the elements in Ae corresponding to
O

those in A 2 have been replaced with zeros,

t
fr[C o v (/Je )] = (72 [v ec(A * )] [ A-1 ][v ec( A 6 )]

= <T2 [vec(Af)] [a*- 1 ][vec(Af)] .

Since the second term on the right-hand side
, -1

is positive

semidefinite, when the same number of individual eigenvector elements are 

zeroed,

t r [ C o v ( p e )] < t r [ C o v ( p c )] < t r [ C o v ( p ° ) ] .

This completes the proof.

3.1.4 Linear Restrictions

Once again, consider the usual regression model

y  = Xp + e

17
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and its transformation

y  = XAA'p + e  = Z6 + e  .

It could be argued that the proper perspective for understanding a 

regression problem is in terms of the original data and not the transformed 

data. Certainly this is the case for an applied problem in economics such as 

a  policy matter. For instance, a governing body would want to know the 

impact of various public expenditures on private productivity (in other words, 

the coefficients /), ) and not the impact of ephemeral orthogonal variables (in 

other words, the coefficients dj). Accepting that perspective, a single PCR

restriction in 0 -space that involves k elements is misleading and should be 

viewed as k impositions in p -space. In other words, a single linear 

restriction in f t -space can be further decomposed into a number of "partial" 

linear restrictions, each contributing to that single linear restriction.

Currently, there is no term to express this notion so useful terminology will 

be developed below.

In the case of principal components, the usual expression for a 

restriction R on the vector of explanatory variables P,

R p  = r ,

in reality is

RP = 0,

18
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since, because of orthogonality in the PCR technique, decision rules which 

call for deleting columns of the k x  k eigenvector matrix A is equivalent to 

zeroing the elements of the selected vectors. The matrix R is a j  x  k 

matrix, j  < k, containing non-sample information about relationships among 

the individual parameters of p  and is said to contain j  linear equality 

restrictions. The simplest case of PCR where only one eigenvector is zeroed 

amounts to imposing one linear equality restriction on the columns of A but 

k linear equality restrictions on the rows of A\

To see this better, the PCR restriction in Section 3.1.1, defined as

/

( a  -  a c ) p  = o,

in 3-space would be

’ *11 a t 2 a l3 ’ «11 a \2 0

a 2 \ a 22 a 23 — a 2\ a 22 0

. a 3\ a 32 a 33 . _ a 3\ a 32 0

P i

P2

f a

0

/1<3*

O01

' P i '

0  0  a 2 3 P 2 =  0

1--
--- 0 o a U> 1 f a .

'  0 0 0  ' ' P i '

0 0 0 P 2 =  0

_ f l13 a 23 a 33 . . P i  .

19
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[Pla  13 +  /^2fl23 +  @3a 33 ] ~  ^  .

To understand how the beta vector is affected, recall that 0  = AO and 

expand,

' a l l a l2 a l3 ' P i '

a 2 i a 22 a 23 e 2 = P 2

_a 3 l a 32 a 33 . A . A .

a l A  +  O x2 0 2 +  a l3&3 ' P i '

a 2 l@ l a 22@2 a 23&3 =
P 2

a 3 l 0 x +  a 3 2 0 2 +  a 330 3 A .

so that
P i  =  a l A  + « 12^2 +  a l3&3 

P i  =  a 2l@l + a 22@2 + a 23@3 

P 3 =  a 3l@l + a 32@2 + a 33®3-

Imposing a restriction on the last column of A, that is a X3 = a23 = a33 = 0, 

results in

P i  =  a l A  + a l2&2

P 2 =  a 2 \®\ a 22@2

P 3 =  a 3l@l + a 32&2-

Thus, it is easily seen that the single linear restriction in principal 

components space, or theta space, involves three pieces of information 

from the beta vector!

20



www.manaraa.com

Next, consider the PER estimator subject to the same restriction

Rp  = 0.

In this more flexible estimation framework the restriction would be

/
(A  -  Ae ) p  = 0,

and in 3 -space case might be

(
a n  a \2 a \3

10CM

1
" A '

a 2\ a 22 a 23 — a 2l  a 22 a 23 A

V _ a 3l a 32 a 33 . _a 3l a 32 0 A .

'0 0 a l3 h i
0 0 0 A =  0

0 0 a 33 . A .

'  0 0 0
-

' A '
0 0 0 A =  0

. a l3 0 a 33 A .

[ P l a  13+ $ 3 a 33 ] - 0  •

In this instance the beta vector is
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A  =  a \ \ Q \  + a l 2 ^ 2

f ) 2 =  a 2 l A  +  a 22 A  +  a 23&3

A  = a 3lA + a 32A"

Thus, it is easily seen that the PER rule involves only two pieces of 

information from the beta vector with a single linear restriction! Further, in 

the simplest case of PER where only one element is zeroed, only one 

piece of information is removed (compared to three for PCR)! Hence, the 

term restriction, which embodies the information lost by many traditional 

regression techniques that reduce the amount of information composing the 

beta vector, is inadequate for the principal elements framework. In this 

simple 3 x 3  example there are 7 different ways to impose a single 

restriction!

3.1.5 Modulation and Subrestrictions

Thinking in terms of linear restrictions is problematic in the PER 

shrinkage method of MSE reduction because it is more general than zeroing 

or deleting eigenvector elements; estimation techniques such as ADHOC, 

INDIV, and MATRIX can be thought of as fine tuning the signal emanating 

from a data matrix and in that sense modulate the individual eigenvector 

elements. Therefore, the term modulation is introduced to refer to element

wise constraints or partial restrictions that are called subrestrictions. 

Modulating a matrix involves imposing partial restrictions on the columns (or 

rows) that are called subrestrictions.
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3.1.6 Matrix Rank and Matrix Mode

The notion of the rank of a matrix is related to the notion of a 

restriction. One definition of rank is the minimum of the number of linearly 

independent columns or rows. For the k x  k eigenvector matrix A with 

rank k, if PCR dictates that one column should be zeroed, the rank would be 

reduced to k -  1. However, in the PER example above where only two of 

the elements of the third column were zeroed, the rank of the matrix is still k , 

a scalar measure of the number of unrestricted columns. Obviously, the rank 

of a  matrix is misleading as to the number of subrestrictions imposed.

To avoid losing this sort of information the term mode is defined as the 

number of un-modulated elements. Thus, unlike PCR, other PER methods 

can achieve variance reduction by modulating the eigenvector matrix 

without reducing its rank but will reduce the mode.

This simple illustration highlights the inadequacy of using either the 

number of restrictions or the rank of a matrix as a comparative descriptive 

statistic whereas the mode of a matrix does not obfuscate the actual 

constraints imposed on the beta vector. In this scenario, the PCR 

eigenvector matrix has a rank of 2 and a  mode of 6 while the PER 

eigenvector matrix has a rank of 3 and a  mode of 7.

3.2 Mundlak-type Rules

There is an abundance of criteria for guiding the researcher on 

selecting the correct model for a  particular application. Miller (1990) is a 

superb source for both a bibliography and a  taxonomy of these rules;
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among the most popular are Mallows' Cp, Akaike's AIC, and Schwarz' BIC. 

George and Foster (1990) suggest a  newer one based upon a calculation of 

risk inflation.

The decision on how many elements an estimator should delete 

involves considering a whole host of different stopping rules. Certainly for 

any principal components selection stopping rule, a corresponding principal 

elements selection stopping rule can be devised that is roughly equivalent. 

For example, under principal components regression one nonstochastic 

stopping rule is to delete all those components that correspond to 

eigenvalues less than one where the data has been scaled to a  zero mean 

and unit variance. Of course, this rule implies zeroing components when the 

reciprocal of an eigenvalue is greater than one. This stopping rule 

inequality may be written as:

_2 _2 * K i

X j  X j  X j  h  " X j

This formulation says that the sum of k terms must be greater than one, or, 

on average each term must be greater than one divided by k. This 

suggests the following nonstochastic stopping rule for principal elements 

regression:

zero all eigenvector elements that correspond 

to the terms greater than one divided by k.

O
In other words, form the A matrix by setting to zero all atj values that 

correspond to the (afj j k j ) terms that meet the requirement:
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This defines a nonstochastic stopping rule for PER which is defined 

solely in terms of the independent variables and completely ignores values 

of the dependent variable. Such rules have the advantage of having well- 

defined statistical properties and hypothesis testing procedures, but also 

possess unbounded risk since they ignore the dependent variable values 

and thus at times can be highly inaccurate.

Alternatively, any number of stochastic stopping rules could be 

devised. One such rule could be modeled after the principal components 

stopping rule that says delete all those components that have statistically 

insignificant t-statistics in the regression run on all of the principal 

components.

A sophisticated variation of pre-test rules is Mundlak's F-Testing for 

nonsignificant sets of principal components (Mundlak, 1981) which uses the 

F statistic

where D  is the number of components zeroed and where
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Adapting Mundlak's rule to the principal elements regression context, the

corresponding F statistic is:

[3.2.1]
A  2

R a  j=1

d,
1
i=l

a-

6 j  X j

where R is the rank of the ( A -  A 6 } matrix, D  is now redefined as the 

number of eigenvectors which have at least one zeroed element, dj is the 

number of a,j elements zeroed for the j th of the D  eigenvectors with at 

least one element zeroed, and Fm is defined to be the minimum value of all

possible such F values with exactly m eigenvector elements zeroed.

Under this modified Mundlak rule the optimal value of Fm (and, therefore,

the optimal set of meigenvector values to zero) is such that either:

1. Fm < F™_ R table value and Fm+X > table value.

2. Fx > F xn_K table value and the matrix X  has rank K.

3. Fk . x < F%_k table value and the matrix X  has rank 1.
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3.3 Shrinkage Estimators

This section relaxes the severe constraint of zeroing individual 

eigenvector elements so that a partial reduction in magnitude is allowed as 

well.

3.3.1 Fractional Principal Components Regression

Here are proposed three different, but related, fractional principal 

elements regression (FPCR) estimators (see Lee and Birch (1986) and Lee 

(1986)). In this formulation shrinkage is applied to a  principal component in 

its entirety but each component can be weighted differently. Traditional 

principal components uses a binary weighting scheme whereby the effect of 

a  component is either removed entirely by zeroing (a weight of 0) or it is left 

unchanged (a weight of 1). FPCR relaxes this restriction for the particular 

component that is the last candidate for zeroing. Begin with the standard 

regression model

y  = X p  + e

and restate it as

y = XAA'p + e  = Z e  + e

where A is the matrix whose columns are the eigenvectors of X'X and Z 

is the matrix of principal components as defined in section 3.1.1. Next, 

perform the transformation
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y = ZF'Fp + e  = Z f p f  + e

w h e re F is a f c  x  A: diagonal matrix subject to (0  < < 1). Noting

that

Z f  = ZF' = XAF' ,

then FPCR can be expressed in terms of the principal components matrix A 

as

A f  = A F ' ,

so that a  fractional principal components estimator of P  is

[3.3.1] p f  = A f  ( Z'Z )_1 Z ’y

when converted to the PER framework.
Lee specified the diagonal elements of F as = 1 for the r

components retained and /y  = 0 for the k -  ( r  + 1) components
fU

zeroed. However, the ( r  + 1) /y  =  f s , which corresponds to the

pivotal component as a candidate for inclusion or zeroing, is weighted in the 

interval [0,1] so that the component is only partially retained.

In a PER context, this fractional method is a special case when 

k -  1 components are entirely zeroed or entirely retained (as in traditional 

PCR techniques) and only one is partially removed. In other words, the

28
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principal elements that correspond to f s are a!i reduced by the same

amount instead of selectively zeroing or reducing some.

The optimal fraction for f s is chosen according to the rule

Q)
[3.3.2] f s = -------—~2

e '2 + i ;

which is the MSE minimizing solution with respect to the f j 's.

Since 0; and a  are unknown this optimal estimator is problematic;

nevertheless, in this case it is possible that the orthogonality property of the 
principal components coefficients, 0 / s , might enable the OLS estimates

A

0 / s  to provide robust substitutes that may help retain "near" optimality for 

the FPCR estimator.

3.3.2 Principal Elements Shrinkage

The first PER method, ADHOC, is a completely ad hoc method 

originally formulated by analogy with the simple problem of estimating a 

single population mean. The second method, INDIV, is aimed at reducing 

the MSE of each of the estimated regression coefficients of the original 

model individually. Since it adjusts each estimated coefficient separately 

and ignores cross product terms it is essentially a nonmatrix approach. The 

third method, MATRIX, is a full matrix method that is developed with a 

concern for minimizing the trace of the MSE matrix of all of the estimated
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regression coefficients simultaneously so it makes adjustments to the cross 

product terms and not just the matrix diagonal.

ADHOC

The first of these estimation methods, ADHOC, merely defines the 

elements of the principal elements biasing matrix Aa in a  manner analogous 

to the 'optimal' solution to the problem of finding the mean squared error 

minimizing estimate of a single sample mean:

n

The analogous form ADHOC shrinks each principal element individually,

and estimates P  as

[3.3.3] p a = A a ( Z 'Z  )-1 Z'y

Note the similar form to Lee's FPCR, 3.3.2, a consequence of deriving both 

estimators as MSE minimizing solutions. The ADHOC form of FPCR is

30



www.manaraa.com

A

Since 9j and a  are unknown this optimal estimator is problematic;

nevertheless, in this case it is possible that the orthogonality property of the 
principal components coefficients, 9j's, might enable the OLS estimates

9j's  to provide robust substitutes that may help retain "near" optimality for 

the ADHOC estimator.

INDIV

The second principal elements regression method, INDIV, is derived 

to minimize the MSE of the individual estimated regression coefficients as 

follows:

M S E ( p f )  = var A' + (Eft/ -  f t ) 2

= var ft ' + (Eft' -  Eft” )2 

= var ftf + E(ft« -  ft?)2 -  var (ft' - f t ? )

= var ft/ + E ( P !  -  f t / ) 2 -  var ft/ -  var ft/ + 2 C o v (f t/ ,f t /)  

= £ (f t /  -  f t / )2 -  var ft? + 2 C ov(ft/ ,f t/) .

Next, note the following expressions for (3° and (3* which are written 

as linear functions of the ordinary least squares estimators 9°  for

j  =  1, . . . , k of the principal components regression coefficients, the
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eigenvector values a of the original X'X matrix, and the unknown 

principal elements afj which are the population constants to be estimated:

P ?  =
j =i

and fif = I  a f f l
7 = 1

Substituting these expressions yields the following formulation:

M S E ( p f )  = E

K
-  var £  ciijOj + 2 Cov

7 = 1

i  4 0 ° ,  i  aije°
7=1 7=1

M S E ( p f )  = £
7 = 1

-  var X  ^ 6 °  
7 = 1

K  ,  X '  K
+ 2 £ «

I  “ 5  ( e ;  -
► 4 ►

.7  = 1 17 = 1 J

But by the very nature of principal components regression, the 6°  

uncorrelated with one another, i.e.,

= 0
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for j  *  k,  so the MSE expression becomes,

M S E ( p f )  =  E S(4 -
7=1

K K
-  X  afj var 0J + 2 X  var 0J

7 = 1 7 = 1

expanding the first term while noting that 0 J 0 £ ) = E6jEd% ,

M S E (P f )  = £ ( < . ;  -
7 = 1

+2 1 ( 4  -  a< / ) ( 4  -  a*)Ee]E0°t
k>j

-  X  a? var 0;  + 2 X  4 ay var dj  
7 = 1  7= 1

Now, from the definition of variance

E (0 J2 ) = var Q° + ( E 0 °  )2

so that
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M S E ( p f )  = £ (< ,'.  -  atj  )2  ̂var d°  + ( i t t j ) 2]

+2 1 ( 4  ~  au ) { <  ~  “ * ) £ 0 °£ e ‘
k>j

-  X  afj var Q° + 2 £  var 0?.
7 = 1  7= 1

and since under principal components regression 0? and 0£ are unbiased

cP
estimators of 6j  and 6k respectively, and since var Q° = —  , we get

M S E ( p f )  = 2 ( 4  -  a*)' 
; = 1

^  + (P
T  + e ’

+2 X (4 -
k>j

- 1 4  j ; + f - .
;=i ; '= i

Expanding, combining, and canceling terms results in

MSE(P‘ ) = - £ a f  +
7 =  1 A 7

X  ( ay °ij ) 
L>=1
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Taking the first derivative for a minimum or maximum results in 

d M S E lp f )  a* k

[3-3-41 J  = 24  r + 2e‘ 1  ( 4  - ) 4  = 0
ij j  7 = 1

Checking that the second derivative is positive for a  minimum,

4 M 5 £ ( f f ) = 2 f i  + 2 

<*24  4

Following from the first derivative expression

4  t -  + 4  x  4 ® / -  4  x  aueJ = °
Ai j =1 7=1

Now multiply through by XjOj to get

<x24 e , + v 2 i  40 ,  = 4 0 ? £  <,#0y ,
/ . I  J=1

then sum over j  = 1 , . . . ,  K  to get

a 2 2 44 + 144 X 44 = X 442 X «»4
7=1 7=1 7=1 7=1 7=1

or,
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a 2 + I  V ;
7 = 1

I a«50; = I ̂  X «y0, '
7 = 1  7 = 1  7= 1

and finally

144 =
I x i e) 1  auej

_  7=1 7=1

7 = 1

Returning to the derivative expression

4 T -  + ei i  44j= i
*7 I  ^ 7

7 = 1

= 0 ,

dividing all terms by Qj yields

rr2 *
4 TIT = I ai/4

7 7 7 = 1
I 4®;
7 = 1

Now substitute for £  from above and rearrange to estimate
7 = 1

individual a^

[3.3.5]
x  Ay0 2 + a 2

7 = 1
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Estimates of (H are then calculated as

[3.3.6] = A ''(Z 'Z )_ , Z'y

where A 1 -  j  a? j ;  that is, it is made up of individual afj that are the typical 

i j th element of the A* matrix.
a

Since 6j  and o  are unknown this optimal estimator is problematic;

nevertheless, in this case it is possible that the orthogonality property of the 
principal components coefficients, 6j  s, might enable the OLS estimates

dj's  to provide robust substitutes that may help retain "near" optimality for 

the INDIV estimator.

MATRIX

The third PER method MATRIX is derived from the matrix expression 

for the mean squared error of prediction as follows:

P M S E (p e ) = E ( /  -  E y ) ( /  -  Ey)

f
=  E  ( XfY -  Xp)  ( x p ‘  -  x p )  

= E (P‘  - P )  X ’X ( P ‘  - p )

and since a scalar is equal to its trace
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P M S E ( p e ) = E l t r  X ' x { p e -  p ) ( p e -  p )

= E

= tr

= tr

(  , >f
tr X 'x ( A ed° -  A d) d°'Ae -  d'A' >\ / y J

x 'x e \ Aed°e°'Ae' -  Aee°d'A' -  A dd° 'A e' + Add'a '

X'X A e ^Ed°d°'  ^Ae' -  Ae ( E d ° ) d ' A ’ -  A d ^ E d 0' ^Ae' +

Note: Since the principal components estimator d°  is an unbiased estimator 

of the population principal components coefficient d  , we have Ed°  = d. 

Also, by definition of the covariance of d°:

/

Covd°  = E ( d °  -  E d ° ) ( d °  -  E d0 )
/ t

= Ed°d°  -  E d ° [ E d ° )  =  a 1 A-1

Of course, this implies

Ed°d°  = ct2a ' 1 + dd'

which, when substituted into the above expression for PMSE(Pe ) results 

in

Add'A'
J
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PMSE ( f ie ) = tr X'X\ G2A eA~lA e + Ae66'Ae -  A eOd'A'

- Add'Ae + AdO'A'

= tr 0 2X'XAeArxAe + X'XAe00'Ae00' -  X'XAe00'A'

-X 'XA 00'Ae + X'XA00'A'

= tr G2A e X'XAeA-1 + A e X'XAAe00' -  X'XAe00'A '

-X 'XA 00'Ae + X'XA00'A'

and the final expression is

[3.3.7] P M S E (p e ) = 0 2tr

- t r [ x ' X A e00'A'] -  tr X'XA00'Ae

A e X'XAeA-1 + tr Ae X'XAAe00'

+ tr[X'XA00'A').

Next, to minimize this predicted mean squared error, employ the 

following three rules from the calculus of matrices:

(2) = V T ,
d Z
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,„v d tr (Z 'V Z W )  I7_ „
3) -----   1 = V'ZW' + VZW

d Z

When the resulting first derivative is set equal to zero

d  PM SE(p  )
 } — 1 = 2 g  x'XAet c  + 2X'XAedd' -  i x ' X A e e '

d A

=  0 .

The second derivative is positive definite for a minimum,

d 2 P MS E( p e ) ,  .
-----------------------= 2 o  X'XA + 2X'X6d'  > 0

d A

Multiplying the first derivative expression by — ( X 'X ) 1 and collecting
2

terms yields

A m[0 6 '  +  ct2A-1 ] = A06'

or,

[3.3.8] A m = Aee'[ee' + <t2a ~']

Finally, the MATRIX estimator of ft is expressed as

-l
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[3.3.9] P m = A m ( Z'Z )_1 Z'y

Again, as with ADHOC and INDIV, since 0y and a 2 are unknown this

optimal estimator is problematic; nevertheless, in this case it is possible that 
the orthogonality property of the principal components coefficients, dj's,

might enable the OLS estimates 6°'s to provide robust substitutes that may 

help retain "near" optimality for the MATRIX estimator.

3.3.3 Stein-tvpe Shrinkage

Stein-type shrinkage has frequently produced a smaller MSE than 

competing estimators but this class of estimators suffers because exact 

analytic solutions are not available (another limitation is that there must be at 

least three regressors present). Consequently, their performance must be 

evaluated in monte carlo simulations which makes general statements about 

their superiority unsupported outside of the parameter space of the 

experiment. However, they display a  tendency to be minimax; doubtlessly, 

researchers suspect that they may generally produce a smaller MSE than 

most traditional estimation techniques so they are considered in this 

experiment.

EE
In particular, truncated Stein estimators are superior in terms of 

squared error loss (Judge and Bock, 1978). One useful member of the
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family of positive part estimators (PP) proposed by Baranachik (1964) and 

Stein (1966) and subsequently analyzed by many researchers is

e t 1 -  min 1 or ec
d°'d°

where 0 < c < 2 { K  -  2 )  .

Of the many subsequent permutations of this rule offered, a  variation 

used in Hill and Judge (1987) that explicitly utilizes an estimator pq of

produces

[3.3.10] P i = 1 -

a
F ( )

where F ( )  is a random variable with an F distribution having J  and 

( T  -  K )  degrees of freedom. Of course, J  is the number of elements that 

have been zeroed, p q is a general estimate of the P  vector, and a* has 

been chosen subject to

o < a .  < 2 ( 7 - - * ) ( / -  2)
( T  -  K +  2 )J

This restriction makes PP minimax in terms of MSE.

LIS
Numerous authors have assessed the characteristics and 

performance of Charles Stein's (1981) unbiased risk estimator both
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analytically and through numerical methods. Notable among the analytical 

examinations are Judge, Hill, and Bock (1990) and important monte carlo 

investigations are contained in Dey and Berger (1983), Hill and Judge 

(1987, 1989), and Adkins (1991). Stein's shrinkage estimator, dubbed a 

limited translation Stein-rule (LTS), was an enhancement of a modified 

James-Stein estimator originally proposed in Efron and Morris (1971, 1972).

Consider a K  x 1 vector y  and its estimate of an individual y,

where p  is a large fraction of K  and the order statistics corresponding to p  

are (0( =  | y, | and 0){ < (02 < . . . < Q)k. This form of a Stein-rule

limits shrinkage to only those parameters that are relatively precisely 

estimated and leaves those that have larger error margins untouched. This 

is appealing because only those parameters that are providing ‘good’ 

information are allowed to improve their signal so that the reduction in 

variance might offset the small increase in bias.

An operational version of this more sophisticated Stein-rule estimate 

of an individual /?, is

[3.3.11] y{p) = 1 -
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[3.3.12]

7,°(p ) _
(p* -  2 ) a mm

1 -

lo r l  ®<'>
n

X [ m in { y ,° 2or£0(2p )}J
7,

and is estimated as
i '

Plp) = A2 Ay\ p)

This form was first given in Dey and Berger (1983) as a positive-part 

variation-in other words, a truncated estimator. This truncated estimator is 

made useful by letting the data choose the value for p * , (p  > 3 ), which

maximizes

(P -  2 )J

i  =  1

The maximum value of this function of p  is chosen first by a  recursive 

procedure for ( K  -  2 )  iterations. Individual y \p  ̂ are then calculated in

another recursive procedure utilizing [3.3.12] that ultimately yields an 

estimator of p .

This LTS is an attractive choice because the numerical studies in both 

Dey and Berger (1983) and Hill and Judge (1987) suggest that this 

expression may be minimax. Since their version of [3.3.12] merely operates
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in standardized principal components space it is a  simple exercise to 

express it in terms of principal components and principal elements as will be 

shown in the following two sections.

3.3.4 A Truncated Principal Components Estimator

Again, consider again the usual regression model

y  = XP + e

as explained in section 3.1. The necessary variant for implementing [3.3.10] 

is
y  = x p  + £ = XAA'fi + e

I  \_
= Z6 + e  = Z A 1A1d + e

and in final form,

y = Wy + e  .

The least squares estimator of y,

[3.3.13] y°  = W'y ~ n { y , 6 2Ik ) ,

can be decomposed into a principal components form to be

_ i  _ I
[3.3.14] y°  = W'y = A 1Z ’y  = A 2A'X'y.
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Now, eschewing the issue of choosing how many and which principal 

components to zero, for PCR the matrix of eigenvectors will be partitioned 

into Ac = [ A j: A2 ] = [ Al : 0 ] where A2 has been replaced with a

matrix of zeros. The principal components estimator in [3.1.12] is

Substituting Ac for A in [3.3.12] gives the principal components version of 

the LTS y  as

Hill and Judge (1987) suggested investigating the consequences of 

such a hybrid estimator instead of the least squares variety using a Mundlak 

pre-test estimator to make the decision on how many principal components 

to zero. As well, the principal elements version also warrants investigation.

3.3.5 A Truncated Principal Elements Estimator

The LTS estimator [3.3.10] can also be expressed as a  member of the 

principal elements family of estimators as follows. Recalling that one 

particular approach to PER presented before is to select the largest of the

P° = A c (Z'Z)~l Z'y .

[3.3.15]

terms then the next largest, and so forth and setting the
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corresponding ay values in the original A matrix equal to zero to form the 

A e matrix, the principal elements estimator in [3.1.5] is

P e = Ae ( Z ' Z y 1 Z'y.

Substituting A e for A in [3.3.12] gives the principal components version of 

the LTS y  as

[3.3.16] y e = We’y  ~ N ( y , o 2IK ) .

This y e estimate can also be found by substituting in [3.3.14] the 

principal elements matrix M  as defined by

M  = A_1A '2 

where M  is the k x k matrix

m u m 12 • • •  m Xk

M  = "*21 m 22 m 2k

_ m k i m k 2 • "  m k k .

with individual my defined as

a iimy = -4- ,and ( i ,  j  = 1, 2 , . . . ,  K )  ,
j
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to yield

[3.3.17] y e = M 2X' y .

3.3.6 Principal Elements and Restricted Regression

When correct model specification is cast in the restricted least 

squares form

[3.3.18] p °  = p  + (X ,X ) '1/? '[ /? (X /X )]_1( r  -  R p )

with the restriction of the form RP°  =  r on the OLS estimate P°  of /}, 

nonlinear search algorithms like Gauss-Newton, Newton-Raphson, 

Marquardt, and DFP are enlisted to solve a minimization or maximization 

problem. As stated in section 3.1.2, in the principal elements case

R = ( A -  A » j

where

A) = ( a  -  A‘ )

so that

R = Ae‘’ ■
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When r  =  0 the subtraction operation results in

( r  -  R/i)  = (0  -  RP)  = A e'p.

Iteratively solving for the minimum value for R would appear to be 

efficient if the Newton-Raphson method could be utilized, but it is 

computationally expedient to avoid the calculation of second derivatives. 

Therefore, methods such as Gauss-Newton, DFP, and Marquardt, among 

others, are appropriate since they do not require a  second derivative. 

Further, the choice of algorithm is data dependent as each one performs 

better in some settings than in others (Greene, 370).

A Gauss-Newton algorithm truncated after the linear portion works by 

accepting starting values for R and calculates a new value for R at each 

iteration. When the difference between Ri+l and /?, is equal at a chosen

criterion, convergence is declared and an extremum for R has been 

approximated. However, since the shape of the function is unknown there is 

insufficient knowledge about the second-order conditions; that is, it is 

uncertain if it is a maximum or minimum, and if it is a minimum, is it local or 

global?

The algebraic expression of the Gauss-Newton algorithm is given in 

terms of the following function Y,

Y = f ( R )  + e  ,

subject to
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where Y is a K  x  K  matrix, R is a J  x  K  matrix of a subset of the 

eigenvector matrix, / ( / ? )  isa  X x  K  matrix, and e  is a  K  x K  matrix

of disturbances with a  common mean of 0 and a  common variance 

of a 2

The first order Taylor series expansion of / ( R)  is

f ( R )  = / ( « „ )  + f d (Ro) (* ~ * o )

( f d denotes the first derivative)

so that

r  = / ( * > )  + / ‘, («o)(R  -  «o) + e .

Define

Yl  S Y -  / ( R q )

so that

>0 = / ■ '( « o ) ( «  -  * o ) +  «*

or
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[3.3.19] Y’0 = / ‘, ( * 0 )K  -  / ‘' ( ^ ) K o  + e'.  

Then, define

C  = y'o - / ' (* »)«o

and it follows that

[3.3.20] Yq* = f d {Ro)Ro + e \

The least squares estimate of R is

K  = { [ /■ ' ( « b ) ]  [ / ‘' ( « o ) ] }  [ / ‘' ( « o ) ]  C  

or more generally

*?♦! = ( [ / ' ' ( « . ) ] [ / “' ( « , ) ] }  [ / "  ( « , ) ] ’ J-,"

Alternatively

R° = «o + | [ / ‘' ( « o ) ]  [ / " ( « o ) ] }  [ /■ '(Ro)]  y ’o

or more generally
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[3.3.21] C ,  = «, +  { [ / “' ( « , ) ]  [ / “' ( « , ) ] }  [ f d { R , ) \ y ;

Now, finding [ f d ( Rq ) ] is not straightforward in practice because

solving for it requires using the calculus of matrices. If the matrices were 

vectors the solutions would be relatively simple, but when they are not 

simple vectors the dimensions of the normal derivatives explode on the 

order of j  and k.  So, the following rules are introduced:

^  d \ ( X ' X ) - '  R ' \ R ( X ' X )_1 k T 1 RA

= [ (X 'X )-1 (8) Ij ] Ij k £ ( /? (X 'X )_1 R ' ) _1 RA <8> l k

- [ ( X 'X ) " 1 <8> / ^ ( ^ ( X 'X ) " 1/? ')" 1 <8> Ij 

v e c ( / / ) v e c ' [ ( X ' X ) " 1 <8> <8> / * ]

- [ ( X 'X ) _1 (8) / ^ I j / ^ X 'X ) -1 /? ')" 1 <8> Ij J [ /? (X 'X )_1 (8) I j ]  

^ [ ( ^ ( X 'X ) - 1/?')"1 (8) <8> /*]

+ v e c ( R ( X 'X )_1 R ' )_1 R ( X 'X )_1 J vec'(A ) .
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An advantage of this formulation is that R° can now be respecified in 

vector terms as

[3.3.22] r e c ( j & , )  = { [ / " ( S , ) ]  [ / rf( « , ) ] |  [ / ' ' ( * , ) ]  v e c ( Y " ) .

This is the correct form for programming the least squares solution of 

the Gauss-Newton algorithm and is the basis for the more efficient (in this 

instance) Marquardt method which takes the form

[3.3.23] v e c ( /? f+ 1 ) =

| [ / ‘, ( R . ) ] [ / ‘i ( R i ) ]  +  *

[ / ‘, (R 1) ] 'v « : ( l ' " ) .

/

The additional term X diag [ f d ( R,f) ] [ f d ( Rî ) ] merely changes the step

length of the adjustment between iterations and lambda takes on an initial 

value like 10‘3 and may be adjusted by a factor such as 10 depending upon 

differences between iterations.

As observed by Greene (370-372), there is a  dearth of criteria 

regarding the selection of a  method of nonlinear optimization and the correct 

choice is a function of the particular data being studied.
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3.4 Estimator Set

To summarize, the following estimators of /? were presented ( p q is a 

general estimator of /?), where A is the matrix whose columns are the

orthonormal eigenvectors of X'X so that Z = XA (the matrix of principal 

components) and 6  = A'ft.

[3.1.1] OLS p °  = A (Z 'Z )~ l Z'y

Ordinary least squares with the complete A matrix.

[3.1.2] PCM p c = Ac ( Z 'Z  )-1 Z'y
Partition A to yield A c = [ Ax: 0 ] according to a Mundlak pre-test
type rule.

[3.1.5] PEM p e = Ae ( Z'Z )_1 Z'y
Redefine A as Ae, a specially ordered matrix also calculated
according to a Mundlak pre-test type rule.

[3.3.1] FPCR p f  = A f  (Z 'Z ) -1 Z'y

A f  is chosen according to Lee's fractional estimation method.

[3.3.3] ADHOC p a = Aa (Z'Z)~l Z'y
Aa is a  form of A analogous to the solution for the mean squared 
minimizing estimate of a single sample mean.

[3.3.6] INDIV p l =  A* ( Z'Z )_1 Z'y
A1 is the principal elements specification that shrinks each of the ay 
individually.

[3.3.9] MATRIX p m = A m ( Z ' Z ) ' 1 Z'y
Am is the matrix version of INDIV that shrinks the elements 
concurrently.
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CHAPTER 4

INTUITIVE INTERPRETATION

4.1 Unbiasedness

Although the objective is to get estimates as close to the true 

population values as possible, for mathematical convenience researchers 

often limit their search for quadratic risk (mean squared error) minimizing 

estimators to the class of unbiased estimators. This is unfortunate, for 

although it is true that analytical solutions to the quadratic risk minimization 

problem are often hard to come by, those who limit themselves by gamely 

searching the class of unbiased estimators may well be forfeiting the contest.

Consider the usual specification of risk as the expected value of the 
loss function l ( /J , /J9 )

p ( l ( p , P " ) )  = e ( l ( / j , / » « ) ) .

If the first criterion is to minimize the risk p, it becomes a problem to find an 

estimator that is admissible. For instance, it is well known that in this context 

even Stein-type estimators perform best in only some regions of the 

parameter space and a  generalization as to the necessary conditions has
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not been forthcoming.5 A researcher is left with no clear-cut rule on how to 

choose the one technique that dominates for a  particular problem being 

studied.

Thus, a  second condition is often added, such as unbiasedness, 

invariance, or sufficiency. However, the imposition of the second rule should 

not render the first one unobtainable and with the unbiased restriction that is 

precisely what occurs! This is due to the existence of the Cramer-Rao lower 

bound. On one hand, the Cramer-Rao lower bound is an encouragement to 

those searching within the class of unbiased estimators because it provides 

a lower bound for the variance of all unbiased estimators of the specified 

population parameter being estimated. On the other hand, the Cramer-Rao 

lower bound establishes a region of variance reduction which unbiased 

estimators may never enter. Fortunately, biased estimators that can and 

often do have variances that fall below, and potentially well below the 

Cramer-Rao lower bound, are able to enter this region of improved variance 

reduction.

To see this key point more clearly consider the following dart board 

diagram.

SThe original Stein estimators are superior to OLS/MLE in all regions of the parameter space.
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o

FIGURE 4.1

UNBIASED "O" ESTIMATOR AND BIASED "X" ESTIMATOR

Since the center of the target is the true population parameter /?, by 

definition the unbiased “o“ estimator (such as OLS) (5° has an expected 

value = p  so the distribution of P° is centered at / J .

Furthermore, if P° is an efficient estimator of p  as determined by the 

Cramer-Rao lower bound, then p °  has the smallest possible variance of all 

estimators of p  in the class of unbiased estimators. The problem is that this 

smallest possible variance may be quite large as is generally true in cases 

of high multicollinearity. Consequently, it is quite possible to find a biased
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estimator ft* represented by the "xH values that has a smaller mean squared 

error than any unbiased estimator.

As is evident in Figure 4.1, the biased “x" estimator may well generate 

values much closer to the true population value /J than the unbiased "o"

estimator, and it is entirely possible that some of those estimates will be 

exact. Of course, if the direction of the bias was known it could be 

"corrected" to make it unbiased, but often the direction of the bias is 

unknown. Also, the Cramer-Rao lower bound suggests that it may be 

impossible to produce an unbiased estimator with as low a variance and, 

perhaps, as low a mean squared error as is possible with biased estimators. 

Bear in mind that each "o" and "x" value represents an entire sample of 

values used to estimate it. For example, a  single "o" value may represent

6,000 families as in the Panel Study of Income Dynamics. An investigator 

only gets one estimate for a given sample. Moreover, we do not know for a 

given sample where that single "o" value or "x" value will fall relative to the 

target's center. All we know is that in some sense the "x" values are "more 

likely" to be close to the target center than the "o" values so there is less risk 

with the biased estimator.

4.2 Matrix Interpretation

The following hypothetical matrix examples illustrate the action of the 

various estimators in terms of the reparameterized coefficient vector 9°  

where
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6° = { Z ’Z) ]Z'y and Z = XA

and clearly illustrate that all others are a special case of principal elements 

regression6.

• The ordinary least squares estimator, f}° = A0°,  uses all of the 

elements of the 6°  vector. Thus, the eigenvector matrix would be:

’ «11 a l2 a \3 a l4

a 2 l a 22 a 23 a 24

a 3 \ a 32 a 33 a 34

d 4 l a 42 a 43 a 44 _

• A restricted least squares estimator which simply deletes two of the 

original explanatory variables would have the form = Ar6°  and the

eigenvector matrix would be:

«11 an a \3 a \4

a 2 l a 22 a 23 a 24

0 0 0 0

0 0 0 0

• A PCR estimator which drops the last two principal components would 

have the form f}c = Ac0°  where:

6Appendix A.2 lists som e of the actual matrices from the simulations.
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Ac =

a \\  a \2 ® 0
a 2 l a 22 0  0

a31 a32 0 0
_a41 a42 0 0

• A regression based on a  factor analysis with two factors, where the first 

factor represents three original explanatory variables and the second 

factor represents the second, would have the form P^a = A fa6° and

produce an eigenvector matrix:

'«11 0 0 O'

0 a 12 0 0

a 31 0 0 0

_ a 4 l 0 0 0

• A FPCR estimator such as Lee's which zeroes the last principal

component and reduces the third by f s, where (0  < f s < l ) ,  would

have the form ft* = A* 6°.  The eigenvector matrix would appear as:

'* 1 1 a \2 / s a 13 O '

fl21 a 22 f s a 23 0

a 31 a 32 f s a  33 0

. a 4\ a 42 f s a  43 0

• The more flexible PER estimator which weights each of the a^

individually, = f^ay subject to (0  < f y  < l j ,  would have the

form p e = A eQ° :
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Ae =

f a  f a  f a  f a
J 11 J 12 J 13 J 14
fa fa fa fa
J 21 J 22 /23 /24
ra rd fa fa
J 31 /  32 J 33 /  34 

/a  /a  
. J 41 J 42 /  43 /  44

Whereas PCR uses the same subset of the 6°  vector (that is, the 

corresponding elements of the same columns are used) in determining each 

element of the fic vector, PER can use all of the elements of the 6°  vector in 

determining the composition of the vector. Thus, each of the elements of 

the p e vector can be based on a different subset of the 6°  vector and the 

dimension of that subset can be different as well.

To see this better, by comparison in the above examples,

p i  =  K « r )  +

whereas

p \  = ( / . v s )  + ( / m )  + ( / . v s )  + ( /?4<s)

and

P I  = K *,0 ) + ( a42^2 )

whereas

«  = ( / « i 0 f )  + ( / « « 2) + ( / « » ? )  + ( / « « ) •
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Since, in PER, the weighting scheme need not zero an element nor 

even shrink it at all, fif could be equal to P°  if it is providing unambiguous

information (that is, it is not involved in the multicollinearity thread that 

connects some of the variables).

In the case where elements are zeroed, it is obvious that PER, by 

being free to search for the combination of smallest eigenvector elements, 

has the potential to reduce variance without increasing bias by a greater 

amount than PCR when the same number or fewer eigenvector elements 

are zeroed! In the more general case of PER shrinkage, it has the potential 

to reduce variance without increasing bias by a greater amount than PCR 

without zeroing eigenvector elements!

Going further, as long as PER shrinkage does not introduce linearities 

into the eigenvector matrix, there is the potential for a  smaller MSE than PCR 

without reducing its rank. Similarly, there is the potential for a smaller 

variance than OLS without reducing the rank of the matrix.

4.3 Geometric Interpretation

Another way to gain an understanding of the PER structure is to look 

at a graphical example of the impact of zeroing in two dimensions.

The original linear statistical model y  = XP + e  with least squares 

estimator P°  = ( X'X )_1 X'y maps the T  rows of the X  matrix into a 

-dimensional space. In the case where K  = 2, Figure 4.2 locates vector 

*(1) = (*11» *12) onto 3X08 ancl ^2-
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CD" fc(i)

FIGURE 4.2 
RELATIONSHIP OF ORIGINAL X VARIABLES 

AND PRINCIPAL COMPONENTS, Z

The same point located by the X 's and b's can be reexpressed in 

terms of the Z 's  and a's by using the eigenvector matrix A to transform the 

X variables into their principal component variables Z with the relation 

Z = XA. The value of this operation is that the transformation into 

principal components organizes the data scatter (data ellipse) along its 

major and minor axes as shown in Figure 4.3.
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FIGURE 4.3 
ALIGNMENT OF DATA ELLIPSE

The depiction also reveals the relationship among variances, 

eigenvalues and eigenvectors. By construction the first principal component 

Z, captures as much of the variation in the X  variables as any one linear 

combination of the X  variables could possibly do. Thus the variance of Z, 

which is its eigenvalue At represents the data scatter along the ax axis

which represents the direction defined by the first eigenvector. In turn, the 

second principal component Z2 captures as much of the remaining variation

in the X's as any second linear combination that is orthogonal to the first 

linear combination could possibly do. The variance of Z2 is its eigenvalue 

A2 which measures the dispersion of the data scatter along the axis whose 

direction is defined by the eigenvector a2. Clearly, from Figure 4.3 and 

4.4a, A] > A2. The greater variation along the ax axis implies that the 

information provided by the data along the a2 axis is less precise than that 

along the a x axis.
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FIGURE 4.4a 
ALIGNMENT OF DATA ALONG EIGENVECTORS

Additional components are generated in an analogous manner where

each additional principal component is orthogonal to each of the preceding 
principal components with variance Ay such that Aj _ x > Ay > A;+1.

So, what happens when a component is deleted? Suppose that A2 is zero,

or close to zero, so that deleting a2 would be the appropriate restriction. As

seen in Figure 4.4b, eliminating a2, the direction with the least information,

would collapse the data ellipse onto av the direction that contains the most

information.
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FIGURE 4.4b 
TOTAL COLLAPSE OF a2 VECTOR IN PCR

The implication is that a2 represents an "extra" dimension that is unstable

and provides very little information (even though it may contain an amount of 

useful information). Therefore, estimation using only ax is more stable,

reliable, and uses almost all of the information in the original data.

Principal elements deletion is analogous in that it represents a 

mapping of eigenvectors in the original space spanned by bx and b2 as

shown in Figure 4.4c.
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FIGURE 4.4c 
PARTIAL COLLAPSE OF a2 VECTOR IN PER

Instead of collapsing the a2 vector onto the at vector completely, principal 

elements regression in this case only partially collapses the a2 vector by 

setting an  =  0 and, thereby, only partially forcing the a2 vector to conform 

to the a x direction. This implies less confidence in the information 

suggested by an  relative to that offered by a22, a2l, or au by some 

measure. That measure might be the size of the ay values themselves, or, 

more likely, some transformation of them such as comparing the ( a f j / X j )

values to minimize variance for a given number of elements. If minimizing 

quadratic loss is the objective, then using information from the stochastic 

dependent variable Yj would be preferable to just sticking with 

nonstochastic information such as a,y and which come solely from the

nonstochastic design matrix, X.  One advantage of using the Yj information,
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other than the obvious fact that it's central to the problem, is that only a rule 

that uses the information can maneuver to avoid unbounded risk (i.e. it is

well known that deletion rules based only on the X  information will always

have unbounded risk in some region of the parameter space). A 
reasonable testing strategy for deciding which of the ay = 0 restrictions to

impose would be to impose those that seem most compatible with the 

observed data. This strategy is consistent with Mundlak's F-Testing for 

nonsignificant restrictions, various Stein-type methods for variable selection, 

as well as Bayesian posterior odds ratio selection procedures.
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CHAPTER 5

SIMULATIONS7

The possibilities for realizing great gains by using the principal 

elements structure is revealed by the results of monte carlo experiments 

performed first on a designed pseudorandom population and subsequently 

on the classic Gorman and Toman dataset.

5.1 Selection Bias

In Chapter 1 the term selection bias as used in Miller (1990) was 

mentioned. He made the distinction between omission bias resulting from 

leaving variables out of the regression, and selection bias which results from 

using the same data to both select the model and predict the dependent 

variable.

To understand omission bias, begin with the standard regression

model

y  = XP + e

7AII computer calculations were conducted in SAS (release 6.08, TS 415) PROC/IML on the 

University of Notre Dame's IBM 9121 mainframe running under VM 1.1.
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and divide the explanatory variables X  into two subsets. Suppose that the 

model selected from the variables retained in subset A of the data (B 

subset remains) is

A4 = {X'AXA ) - ' x \ y .

The expected value of pA is

E(pA)=(x-AxAy 
= (X AX A)' 

= (X'aXa )' 

= (XAXA)' 

= (X'aXa Y  

= (X'aX J

]X'Ay

'xAxp
' x 'a(x a -.x „)p

'(X'AXA\X'AX B)P

](x'AxApA+x'Ax BpB) 
'(x'AxApA)+(x'AxAy'(x'AxBpB)

=PA+(X'AXA)-' xAxBpB

Thus, the second term on the right side, called omission bias, is the bias that 

accrues from omitting th e #  subset from the regression. Monte carlo 

techniques make it possible to avoid this source of bias.

Selection bias is defined as the difference between the expected 

value of p A conditional upon A having been selected and the unconditional 

expected value of fiA:

Selection bias = E  (PAI subset A chosen) -  E ( P a ).
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The second term on the right is the amount of bias regardless of which 

subset is chosen and the first term represents the instance where the 

conditions necessary for the selection of are present. In a more

exhaustive search procedure both would hold while only the second term 

would hold when a less intensive search method is used. That is, bias 

increases as the search for the best estimator becomes more involved. 

Recalling also from Chapter 1, the new PER estimators have K 2 candidates 

for treatment while the more traditional estimators have only K.  Therefore, it 

is possible that the Mundlak version of PER will generate greater selection 

bias than PCR and OLS yet not as much as an exhaustive search method. 

On the other hand, the new PER forms ADHOC, INDIV, and MATRIX do not 

search the principal elements matrix but use the available information to 

produce an estimate in a  single calculation and thereby are not guilty of 

inflating the selection bias.

5.2 Loss Function

The objective in estimating a  regression coefficient or any other 

population parameter is to obtain an estimate that is as close as possible to 

the true population value; in other words, to minimize the risk function

P( p , p " )  =  e ( l (p ,P* ) ) .
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The cost of missing the true population parameter /? by estimating its value 

to be P q instead of ft, may sometimes be expressed as the error,

-  /?), with a  quadratic loss function:

[5.2.1] L = -  p f

and a corresponding risk function:

p  = E ( L )  = E ( p i  -  p f

where the risk is thus defined as the expected value of the corresponding 

loss function. The quadratic risk function is also known as the mean 

squared (or square) error which numerous authors have routinely shown to 

be exactly equal to the variance plus the bias squared

MSE(f iq , 13) = cov()39 ) + bias(f}q }2 .

Alternative expressions of the risk function besides mean squared 

error are mean absolute value, mean absolute cubic error, and mean 

quadratic error. They differ in that as the power of the function increases 

more weight is given to extreme-valued data points (the outliers). The 

selection of the best risk function is up to the researcher, but mean squared 

error is the most prevalent so it is the criterion employed here.

Using MSE implies that biased estimators are being employed 

because this criterion accounts for the amount of bias generated by the
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estimator. Given a measure of risk, such as MSE, attention can be turned to 

the problem of how to compare the various alternatives. In other words, how 

does one set the rules so that the playing field is level for all methods? The 

monte carlo simulations described below will demonstrate that the principal 

elements structure is a  viable context for examining the way in which 

competing estimators rank their respective parts.

5.3 The Traditional Regression Model8 

The traditional linear regression model

y = Xp + e

is based on the following assumptions regarding the error term,

• Normally distributed errors £,-,

• Errors have a mean of zero £  (£, ) = 0,

• Homoskedastic errors Var ( £ , )  = <72,

• Nonautocorrelated errors Cov ( £( , £; ) = 0 f o r ( i  *  j )  ,

and this assumption about X,

• Nonstochastic explanatory variables.

The traditional regression model assumes a nonstochastic X  for 

convenience even though it is more likely that economic data is random 

rather than fixed. For instance, frequently only a single sample is obtained

8 S e e  K m e n ta  (1 9 8 6 ), c h a p te r s  7  a n d  8  fo r  a  m o re  th o ro u g h  d is c u s s io n .
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rather than repeated samples. Kmenta (1986) pointed out that this was only 

a superficial dichotomy because even randomly generated values can be 

deemed as fixed since the samples are drawn from a finite population.

Thus, the stochastic property is not crucial to an evaluation of an 

estimator, but on the other hand the relationship between X  and e  is.

There are 3 possible dependencies,

• X  and £ are independent

• X  and £ are contemporaneously uncorrelated

• X  and £ are not independent or contemporaneously

uncorrelated.

The first is the most important for least squares in order to retain its 

properties of unbiasedness and efficiency and asymptotic properties of 

efficiency, consistency, and normality. It is even sufficient that only the 

weaker second condition hold for least squares to retain its asymptotic 

properties. However, when the third condition does not hold least squares 

loses its desirable properties.

The experiment on the Gorman and Toman data set is consistent with 

the classical assumptions whereas a feature of the pseudorandom data set 

is the stochastic nature of the explanatory variable matrix X.  Two of the 

experiments conducted on it, one where X  and e  are independent and a 

second where X  and £ are dependent, examine the 

independence/dependence assumption.
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5.4 Datasets

A decision was made to subject the estimator set to extreme 

conditions that are often encountered empirically. The variances of the 

Gorman and Toman data were made arbitrarily large via specification of the 

coefficient of variation (explained below); in this way the inflated variances 

that often accompany severe multicollinearity were modeled.

Similarly, the variance of the pseudorandom data was affected by 

generating a relatively large error vector. In addition, simulations with this 

data reflect the small sample properties of the estimator set because the 

sample size was only ten. It was also possible to manipulate the 

dependency between the explanatory variables and the error vector via the 

random number generator seed. Using different seeds insured 

independence where the least squares estimates are unbiased (Gauss 

Markov Theorem). In contrast, using the same seed induced dependence 

between the explanatory variables and the error vector, in which case least 

squares results are biased.

Appendices A.3 and A.4, respectively, pertain to the Gorman and 

Toman data and pseudorandom data.

5,4,1 Classigi-GannarLamLlQinan

The Gorman and Toman dataset was the basis for the study by Hill 

and Judge (1987) that is part of the lineage of this work. It comprises 36 

observations on a manufacturing process-ten predictor variables were used 

by Hill and Judge, as well as here, because it provided a  benchmark for the
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results of the experiments. Even though the true characteristics of a 

population cannot be known in practice, since they are assumed to be 

known in simulations, the performance of the principal elements structure 

relative to OLS, PCR, or other regression techniques can be evaluated 

based upon this dataset or other empirically obtained datasets.

The following methodology was employed. Preliminary OLS 

estimates of the beta vector of regression coefficients was first obtained from 

the unsealed design matrix (Table 5.1). The "true" coefficients BETA were 

then arbitrarily assigned values so that some were close to the OLS results, 

some were not, and some had sign reversals. In this way the OLS vector 

and the population vector were somewhat oriented in the same direction, a 

method which gave OLS an advantage.

TABLE 5.1 
GORMAN AND TOMAN PRELIMINARY-OLS 

AND POPULATION COEFFICIENTS

m e th o d P1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 CO 6 1 0

a s 5 - 8 - 2 8 7 - 2 4 - 1 5 3 0 2 8 3 8 1 8 0 . 2 7 - 0 . 2 6

BETA 4 - 6 - 2 9 6 - 1  5 - 1 3 0 0 3 5 0 - 1 2 5 - 0 . 2 8 0 . 2 6

Next, an error vector was generated from SAS's NORMAL function 

calculated as

E = NORMAL(SEED) * SIGMA

76



www.manaraa.com

where SEED = 16132280649 and SIGMA was calculated as

SIGMA = CV * YBAR .

The coefficient of variation CV is a unitless number normally derived 

as the ratio of the estimated standard deviation and the mean of the Y vector. 

Since the true population standard deviation is unknown, and since it is 

measured in the units of the dependent variable making it practically 

unbounded, deriving it by specifying CV avoids making guesses about its 

magnitude, thus making this measure invariant with respect to choice of 

units of measurement. CV values up to 2.0 are observed and that was the 

value chosen (Brunson and Marsh (1991d) explored a  range of CV values 

from .25 up to 2.0). It should be noted that the common practice is to assume 

(7 = 1 for computational convenience and not because it is any more likely 

than any other value. The sample coefficient of variation was .28.

A draw from the population of possible dependent variable values 

was then simulated from the usual model

y  = Xp + e

where e = "E", ft = “BETA", and X,  the original design matrix, is fixed in

repeated samples. This was repeated N = 5000 times and summary 

statistics on MSE and estimates of ft for each estimator compiled where the

MSE at each iteration was calculated as

® The s a m e  v a lu e  u s e d  by  Hill a n d  J u d g e  (1 9 8 7 ). T h e y  c h o s e  s ig m a  =  1.
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MSEq = ( p q -  p )  ( P q -  p )

and subsequently averaged over the 5000 experiments.

Whereas the small dimensions of the pseudorandom dataset 

precluded using Stein-type shrinkage rules, this dataset has ten so 

additional estimators were added to the set. The treatment PP is the 

positive-part Stein-type and the treatment DB is the empirical form of LTS. 

Further, extending the suggestion of Hill and Judge (1987) to condition the 

/-vector with a Mundlak pre-test estimator, these experiments conditioned it

with PCM, PEM, ADHOC, INDIV, and MATRIX as well as OLS. Thus, there 

are a  total of 18 estimators to compare: OLS, PCM, PEM, ADHOC, INDIV, 

and MATRIX plus PP and DB versions of each.

The presence of multicollinearity in data can be precisely identified by 

the existence of at least one zero eigenvalue. In practice data is seldom that 

cooperative so it is left to the researcher to decide what small value is 

equivalent to zero. Another popular method to measure multicollinearity is 

to calculate the square root of the ratio of the largest to smallest eigenvalue, 

or, the condition number

k  = A l

\ ^ k  J

where the eigenvalues are obtained from the fully standardized correlation 

matrix; otherwise, data measured in different units will affect the condition
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number. For the Gorman and Toman data the condition number of the 

correlation matrix is 6.88484 / .02744 = 250.91 while the condition number 

of the product matrix is 528,363 / .007 = 75,480,428. There is no precise 

limit above which a condition number is a manifestation of multicollinearity, 

but anything above 30 is often accepted as a  strong indicator of its presence.

A second, contrasting scenario to high multicollinearity is no linear 

dependencies; that is, equal eigenvalues. This was accomplished by fixing 

each eigenvalue according to
k

X A /

TABLE 5.2
EIGENVALUES OF THE GORMAN AND TOMAN DATA

X1
528363

X2
32899

X3
951

Product Matrix (X'X) Eigenvalues 

x 4 X5 X6 X7 

362 162 98 5.80
X8

1.33
X9
.16

X10
.007

*2 x3

Correlation Matrix Eigenvalues 

X4 X5 X6 X7 X8 X9 X10

6.88484 0.90926 0.64067 0.47767 0.39506 0.20981 0.18682 0.17325 0.09519 0.02744

X1 X2 *3

Equal Eigenvalues

X4 X5 X6 X7 X8 X9 X10

56284 56284 56284 56284 56284 56284 56284 56284 56284 56284
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5.4,2 Pseudorandom

The pseudorandom dataset was utilized because it provided a venue 

to observe and measure the behavior of the estimator set when perfect 

knowledge about the relationship between the response variable and the 

explanatory variables was known. Benefiting from a laboratory-like setting, 

the exact population was specified so that there was no lingering uncertainty 

about the impact of omissions, measurement error, or sampling bias. If the 

true population parameters, the /? vector, were known then how would each

estimator perform relative to the others? That is, if an ideal estimator could 

be designed that could achieve the optimum mean squared error reduction, 

what would be the results? By choosing the X-matrix of observed predictor 

values, the ft vector of coefficients, and the e  vector of residuals, precise

knowledge about the relationship among them was known.

Of course, such a data set is devoid of economic content or of any

other subsequent conjecture about the implications of the relationship or 
application of the results. Also, the true relationship between any single

and the response variable y it as embodied in pj ,  is not necessarily

expressible mathematically. A stronger statement supported empirically is

that the true relationship is not possible to express mathematically-what is 
actually observed is that often a single xtj  will occur with multiple values of

yt . For instance, families with essentially the same income (jCy) will have 

extremely diverse expenditure patterns (y(). Hence, the population model

y  = x p .
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also known as the deterministic model, while appealing, is not useful. A 

functional approach to the problem is to defer to reality and specify the 

regression model

y  = Xj9 + e

instead. Since the model can be completely determined by knowing three of 

the four unknowns and, mathematically, since it does not matter which three, 

X, P,  and e  were selected leaving y  to be calculated. The experiment

required the initial conditions to be predetermined. The following conditions 

were set:

• 1000 observations for the population (in deference to our base 

10 metric system).

• 3 regressors so that the outcomes could be graphed10

• a seed of 3, 7, or 11.

• sample sizes of 10 (again, in deference to our base 10 

metric system).

• X  and ft were selected from uniform distributions and £ was 

selected from a normal distribution11. In this way the values 

derived were not so small nor so large as to be unwieldy.

• the experiment was repeated 5000 times.

The vector of responses y  was then calculated as

10This restriction precluded the use of Stein-type rules because of the k > 4  rule, but there 

was much explanatory value in a  graphical treatment.

11The SAS random number generator NORMAL had an upward bias so it was necessary to 

fully scale the residual vector in som e experiments. This is explained further in Section 6.2.
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y = Xp  + e .

The sample size of 10 was chosen because it is the small sample 

properties of estimators that is uncertain while asymptotic properties are 

better understood. Since economic experiments are often expensive to 

conduct and since much of the data gathered is historical, an estimation 

approach that performs well in small samples is of great value.

The data was unsealed; that is, eigenvectors and eigenvalues were 

derived from the product or second moment matrix X'X.  However, since the 

values were generated from the same seed and the same distribution, the 

X'X matrix bears a resemblance to a fully scaled correlation matrix 

(centered to a mean of 0 and variances in standard units) which, according 

to Jackson (1990), is widespread in some disciplines. He further points out 

that some computer packages only permit decomposition using the 

correlation matrix. In any case, the data points generated in the 

pseudorandom data set are unencumbered by labels so that attention can 

be focused on the comparative statistics.

Successive draws from the population was accomplished by 

generating 10 random integers from 1 to 1000 and selecting those 

observation numbers from X.  This X  matrix, unlike the Gorman and Toman 

X  matrix, was not fixed in repeated samples but was permitted to vary from 

draw to draw. The nature of the dependency between X  and e  covered in 

section 5.3 was dealt with by varying the value of the seed used to generate 

the random vectors. To simulate dependence, the same seed value was
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used for X,  3̂, and e.  To insure independence, a different seed was used 

for each, the prime numbers 3, 7, and 11 respectively.

As with the Gorman and Toman data, the MSE was calculated as

MSEq = ( p q -  p )  ( p q -  p )

and subsequently averaged over the 5000 experiments.

Little multicollinearity was present in this data; the condition number 

of the product matrix was 3.29 and for the correlation matrix was .12.

TABLE 5.3
EIGENVALUES FOR THE PSEUDORANDOM DATASET

Product Matrix (X'X) Eigenvalues 

^2
835.722_______________ 95.097________________77.3592______

Correlation Matrix Eigenvalues
X. j ^  Xj

1.117 .979 .903

5.5 Empirical PER Shrinkage Estimators

As noted earlier, since 6j  and <J are unknown an optimal estimator

is problematic; nevertheless, it is possible that the orthogonality property of 
the principal components coefficients, 6j  s, might enable the OLS estimates

Oj's to provide robust substitutes that may help retain "near" optimality for
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the ADHOC, INDIV and MATRIX estimators. By Slutsky's Theorem12, any 
estimator that replaces 6  with 6°  where 6°  is the ordinary least squares

estimator of the principal components coefficients and the j th element of the 

k x  1 vector

Q] = (A'X'XA)~l A'X'y 

and where A is the matrix whose columns are eigenvectors of X'X and
A  2
<7 is any consistent estimator of a 2 such as

a  = ( y  -  x p ° )  ( y  -  X T ) / ( «  -  * )  

is a consistent estimator of a^.

Empirical ADHOC
6 o 2

6o 2 +

a;

Empirical INDIV aU =

ijB7 s aiie°
j = i

K  a 2
I  +  <7

. i - '

12Slutsky Theorem: if plim0° = 0 and g (9 ° ) is a  continuous function of 9° then 

p lim g(0°)= £(d). For a proof see  S.S. Wilks, 1962. Mathematical Statistics. (Wiley, New

Y ork), p p . 1 0 2 -1 0 3 .

84



www.manaraa.com

Empirical MATRIX



www.manaraa.com

CHAPTER 6

MONTE CARLO RESULTS

6.1 The Gorman and Toman Dataset

Because the Gorman and Toman data has ten regressors, trying to 

come to conclusions about the individual parameter estimates is unwieldy. 

Thus, most attention will be directed towards the MSE results in this section 

First an analysis of MSE results using the product matrix will be discussed, 

then the results of the standard errors will be examined, and finally, a 

discussion of performances using equal eigenvalues (no multicollinearity) 

will take place.

For convenience the following abbreviations are used:

OLS ordinary least squares PCM principal components Mundlak
PEM principal elements Mundlak A ADHOC
I/M INDIV/MATRIX PPO positive part OLS
PPCM positive part PCM PPEM positive part PEM
PPA positive part ADHOC PPI/M positive part INDIV/MATRIX
DBO Dey and Berger OLS DBCM Dey and Berger PCM
DBEM Dey and Berger PEM DBA Dey and Berger ADHOC
DBI/M Dey and Berger 

INDIV/MATRIX
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6.1.1 Product Matrix Eigenvalues

Table 6.1 contains the summary statistics for MSE calculations of 

each of the 18 estimators using the usual eigenvalues obtained from the 

product matrix X'X

Product Matrix (X'X) Eigenvalues

X j  X2 X3 X4 X j  X6 X?  Xg X9 X J0

528363 32899 951 362 162 98 5.80 1.33 .16 .007

TABLE 6.1
AGGREGATE STATISTICS FOR THE GORMAN AND TOMAN DATASET

Method MSE Standard Error Minimum Maximum

DBA 1304 396 123 6345

PPA 1377 52 437 3352

PPI/M 1469 819 103 9637

DBCM 1475 897 1358 14431

PPEM 1625 1103 430 12616

PCM 1865 1683 1341 14431

PEM 1936 1772 1293 14472

I/M 2154 1500 75 10871

PPO 2205 1661 74 12996

OLS 3229 2182 105 14438

A 3273 2071 134 12231

DBEM 3412 3116 92 25467

DBI/M 3562 2072 79 13025

DBO 5580 2813 104 18479

PPCM 7.9E 24 1.03E26 1341 3.5E 27
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Since INDIV and MATRIX produced the same results they are 

combined so there are 15 rows. For convenience, the rankings are by MSE. 

MSE statistics by themselves are contained in Table 6.2 which is organized 

so that the columns represent the base estimation procedures. Three 

characteristics of the average value standout-(l) variations of PP clearly 

dominate the untreated forms, (2) dB variations do not dominate the 

untreated versions, and (3) the new PER forms ADHOC and INDIV/MATRIX 

produced small MSE's.

TABLE 6.2
MEAN SQUARED ERROR: GORMAN AND TOMAN

ADHOC I/M PE PC OLS

A DBI/M DBEM PPCM DBO

3273 3562 3412 7.9E 24 5580

PPA I/M PEM PCM OLS

1377 2154 1936 1865 3229

DBA PPI/M PPEM DBCM PPO

1304 1469 1625 1475 2205

The standard errors are summarized in Table 6.3, again with the 

columns corresponding to the type of base estimator. What is particularly 

impressive is that the PP and DB forms of the new PER shrinkage estimator 

ADHOC have much tighter distributions; only the untreated ADHOC 

estimator is not situated with the others. As well, the PP form of ADHOC has 

a very tight error distribution. The new PER forms ADHOC and 

INDIV/MATRIX, with 4 of the 6 smallest values, are able to concentrate more 

of the distribution close to the desired mean than are alternative forms.
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Otherwise, there is no clear domination tendency between DB and PP, 

although both outperform the untreated forms, having 6 of the 7 smallest 

values.

TABLE 6.3
STANDARD ERROR OF MSE: GORMAN AND TOMAN

A D H O C I/M P E P C O L S

A DBI/M DBEM PPCM DBO

2071 2072 3116 1.03E25 2813

DBA I/M PEM PCM OLS

396 1500 1772 1683 2182

PPA PPI/M PPEM DBCM PPO

52 819 1103 897 1661

Table 6.4 summarizes the maximum value of each estimator. Notice 

that the 5 lowest values are all forms of ADHOC or INDIV/MATRIX, even the 

untreated versions; the two new PER shrinkage methods have implications 

of being minimax. Also, the positive-part variants tend to accumulate at the 

lowest maximums.
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TABLE 6.4 
MAXIMUM MSE: GORMAN AND TOMAN

AD HOC I/M P E P C O L S

A DBI/M DBEM PPCM DBO

12231 13025 25467 3.5E27 18479

DBA I/M PEM PCM OLS

6345 10871 14472 14431 14438

PPA PPI/M PPEM DBCM PPO

3352 9637 12616 14431 12996

Notice in Table 6.5 containing minimum values that 3 of the 5 lowest 

minimum values are all forms of INDIV/MATRIX. A striking statistic is the 

high minimums for all three forms of PCR, accompanied by the untreated 

PER estimator. Paradoxically, a minimum that approaches the target of 0 

also inflates the variance so this statistic is not as interesting as the others.

TABLE 6.5 
MINIMUM MSE: GORMAN AND TOMAN

ADHO C I/M P E P C O L S

PPA PPI/M PEM DBCM OLS

437 103 1293 1358 105

A DBI/M PPEM PPCM DBO

134 79 430 1341 104

DBA I/M DBEM PCM PPO

123 75 92 1341 74

In summary, the new PER forms ADHOC and INDIV/MATRIX perform 

very well in comparison to the other estimators when evaluated by mean
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squared error and standard error. Further, examination of the maximum 

MSE's intimates that ADHOC and INDIV/MATRIX may be minimax. 

Simulations on the Gorman and Toman dataset are very encouraging for the 

new PER forms.

6.1.2 The Beta Vector

Turning attention to the estimates of the beta vector, the problems 

caused by the dataset's dimension and the large number of estimation 

techniques precludes the same graphical approach as will be used for the 

pseudorandom dataset. Instead, three methods will be used. One focuses 

on the actual parameter estimate and a second is concerned with the 

standard error of each component of the beta vector. Third, a useful but 

rather simple way to summarize the results within a statistical category is -• 

by each /?, -- to assign a score of 1 if a  method had the most desirable

value, a  2 if it had the next most desirable, and so on, and then compute the 

average rank order value. Low values imply that an estimator performed 

well overall.

Table 6.6 lists the average estimates of /?, in separate categories 

where the cell containing the true beta is in bold for easier location. As 

expected, since OLS is an unbiased estimator in almost every instance OLS, 

PPO, and DBO are relatively close to BETA, with some instability noticeable 

for the last 3 or 4 /Jt . Among the remaining estimators, INDIV/MATRIX

variations are relatively close to BETA except that the positive part variant is
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consistently farther away than either of the other two. Table 6.7 lists the 

standard errors of /?, in separate categories.
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Another way to simplify is to average the standard errors of each 

estimator over all betas: see Table 6.8a. ADHOC estimators perform very 

well because they have smallest errors across all parameters. Considering 

the treatments, there is no clear pattern. Two versions of PCM produced 

impressive results (but be reminded that pre-test estimators have 

unbounded risk so their performance is more sensitive to the sample 

information than the others).

TABLE 6.8a 
BETA SUMMARY GORMAN AND TOMAN: 

AVERAGE STANDARD ERROR OVER ALL BETAS

PPA A DBA PCM DBCM PPI/M PPEM PEM

22.01 81.26 82.65 158.86 158.86 180.59 234.69 305.51

I/M PPO OLS DBI/M DBEM DBO PPCM

344.14 364.40 519.05 544.54 587.52 823.13 1.7E24

Table 6.8b is the average rank order of standard errors based on 

Table 6.7. For instance, PP ADHOC receives 1's for

A . A > A. /*5. A * P i» A- a 3 for A- and 4's for A . Ao- Thu®-its
average rank is 1.8. Each remaining beta is ordered and averaged in the 

same fashion. When the estimators are characterized this way, ADHOC has 

3 of the 5 smallest values, ADHOC and INDIV/MATRIX together have 5 of the 

7 smallest values, and even two PCM forms also do well (remember, pre-test 

estimators have unbounded risk). Among the types of treatments, the three 

largest values are DB forms so PP forms have an edge.
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TABLE 6.8b 
BETA SUMMARY GORMAN AND TOMAN: 

AVERAGE STANDARD ERROR RANK OVER ALL BETAS

PPA PCM DBCM A DBA PPI/M I/M PPO

1.8______ 2J5________ 3J5_______ 3JJ_______ 4J5_______6^7________ 8J!______ 9.3

PPEM PEM PPCM OLS DBI/M DBEM DBO

9.5_______ 9.6  10.0 11.4 11.5 13.0 14.3__________

Overall, if the performance criterion is solely the accuracy of an 

estimator as manifested by just the mean estimate, unbiased OLS versions 

would be preferred, INDIV/MATRIX is a close second, and the relative 

performance of the remaining ones is unclear. If the performance standard 

instead is only the distribution of estimates, ADHOC would be the estimator 

of choice while INDIV/MATRIX follows closely. Combining the two 

standards, accuracy and distribution, INDIV/MATRIX does well and could be 

characterized as the wisest choice.

6.1.3 Clustering of the Beta Estimates

This section presents a  non-graphical, simplified way to examine the 

clustering of parameter estimates around the true parameter. Even if biased 

estimators have a reduced mean squared error over OLS, if the distribution 

is located so far from the target parameter that it has little chance to provide 

a precise estimate, the estimator may be undesirable. In other words, it may
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be desired that the envelope defined by the scatter of point estimates have 

the opportunity to contain an exact or near-exact estimate.

To define 'precise' for this analysis, a range around the true beta was 

arbitrarily chosen as 100. For instance, the /?, estimates were sorted by

magnitude, the true beta located, and then the 50 values on either side of it 

were selected. Table 6.9 contains that summary.

The three forms of ADHOC concentrate a  large number of values 

close to the true parameter in 5 of the betas, P] , /J4 , P7, P9, and j310. In 

fact, for p7, p9, and /J10 it has the three largest values and in Px and p4 it 

has 2  of the three largest. In f i2 t h e r e  a r e  a  m a r | y  close values, too.

Unlike ADHOC forms, OLS forms never have the largest number of 

values. Only in p3, P5, and /?6 did it produce a large number of precise 

estimates while in P2»A t» anc* P% there were many close values.

INDIV/MATRIX forms are very consistent across all betas, doing 

particularly well in P2, p5, P6, and /J8 with the largest values in addition to 

other large values. Also, they have many large values in /?,, p3, /J7, p9, 
and Pl0, too.

Thus, not only did the PER forms ADHOC and INDIV/MATRIX 

estimators tend to produce small MSE's and small standard errors, they also 

located precise point estimates near the true parameter as often or more 

often than did OLS and its PP and DB variants.

97



www.manaraa.com

TA
BL

E 
6.

9
CL

US
TE

RI
NG

 
OF

 
BE

TA
S 

GO
RM

AN
 

AN
D 

TO
M

A
N

PC
M 0 PC
M 0 PP
CM 0 PP
C 0 PC
M 0 PC
M 0 i  - PC
M 1

DB
EM 0 PC
M 0

OL
S 0 DB
CM 0 PP
A 0 PP
CM 0 1 ° PP
A 0 <  ̂ T"' PP
CM 0

PP
CM 0 PP
CM 1 <  «- DBI
/M

L__
0 PP
A 0 PP
CM 0 OL
S 2 PP
CM 1

DBI
/M 1

DB
CM 0

DB
CM 0 DB
O 3 DB
O 0  ̂ 0 DB
CM 0 DBI
/M 2 PP
A 1 OL
S 2 0O0Q

DB
O 3 DB
A 2 DB
CM 0 PP
CM 0 DB
A 1 DB
E 2 DB
CM 1 i  -

PP
EM 3 PPI
/M 3 PPI
/M 3 PPI
/M 2 DB
CM 0 <  CM I/M 3 DB
A 1 PP
O 2

--
--
--

-1
l/M 3

PP
A 3 CO DB
C 3 PP
A 4 <  »-

Odd DB
O 5 PC
M 3 DB
I/M 3

DB
I/

M
5 PP
A 4 PC
M 3 I/M 4 DB
A 2 DB
O 4 OL
S 6 PPI
/M 3 OL
S 4

I/
M 5 OL
S 5 DB
O 4 9Odd DB
O 3 PPI
/M 6 DB
CM 4 PPI
/M 6 DB
CM 3 PP
O 4

PE
M 5 A 7 DB
I/
M

4 LSTO PPI
/M 6 PC
M 4 1 N I/M 4 PP
EM 5

PP
O 8 DB
A 7 $ ^ O

BB
A 9 DB

I/M 7 PP
O 8 PPI
/M 5 i DB
EM 5

DB
E 9 DB
I/
M

8
I

OL
S 11 i  = DB
EM 9 6oaa PP
CM 10 DB
E 8 PP
CM 10 PPI
/M 7

PP
I/

M
10 DB
EM 8 I/M 11 A 14 OL
S 10 DB
I/
M

9 DB
A 12 I/M 10 A 11 DB
A 15

DB
A

13 PP
O 10 PP
O 15  ̂ T" PP
O 16 OL
S 11 A 14

01Odd DB
A 14 PP
A 20

A 16 I/M 14 DB
E 16 DB
A 20 I/M 17 I/M 12 PP
A 21 DB
I/
M

10 PP
A 31 A 22

CO. CMCO. S 2. inCO. & Nca & 0>CO. o
CO.



www.manaraa.com

6 J  .3 Equal Eigenvalue?

Table 6.10 contains the summary statistics for MSE calculations of 

each of the 18 estimators when the eigenvalues are all equal.

Equal Eigenvalues

*1 ^2 *3 *4 *5 \> *7 ^8 *9 ^10

56284 56284 56284 56284 56284 56284 56284 56284 56284 56284

Since INDIV and MATRIX produced the same results they are combined as 

done previously so there are 15 rows. For convenience, the rankings are by 

MSE.
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TABLE 6.10 
AGGREGATE STATISTICS FOR THE 

GORMAN AND TOMAN DATASET: EQUAL EIGENVALUES

Method MSE Standard Error Minimum Maximum

A 17.64 2.38 10.31 128.99

I/M 3229.36 2182.34 105.90 14438.39

PCM 3229.37 2182.34 105.90 14438.39

OLS 3229.37 2182.34 105.90 14438.39

PEM 3229.37 2182.34 105.90 14438.39

DBA 3229 .39 2182.32 104.48 14438.38

DBI/M 3229.57 2182.21 105.97 14438.39

DBEM 3229.58 2182.21 105.95 14438.39

DBO 3229.58 2182.21 105.95 14438.39

DBCM 3229.59 2182.21 106.09 14438.40

PPO 3229 .58 2182.21 105.95 14438.39

PPCM 3229.58 2182.21 105.95 14438.39

PPEM 3229 .58 2182.21 105.95 14438.39

PPA 3229.58 2182.21 105.95 14438.39

PPI/M 3229.58 2182.21 105.95 14438.39

It is expected that there would be little difference among the 

estimators in this scenario because the absence of dependencies means 

there is no way for an estimator to determine which elements to impact. 

Essentially, that is what occurred for the untreated and DB versions since the 

minor differences are likely due to rounding errors. Thus, the performance of 

ADHOC in table 6.10 is particularly impressive. It dominates all other 

estimators resoundingly in all statistics!
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6.2 The Pseudorandom Dataset

Analytic properties of estimators are often derived under convenient 

assumptions such as normally distributed residuals with a mean of zero and 

a variance 1 or independence between the residuals and the explanatory 

variables. This portion of the dissertation examines the estimator set under 

those conditions as well as unkind (and likely more realistic) circumstances 

where those assumptions are explicitly violated. Five sets of simulations 

were performed with this dataset.

In Section 6.2.1 and 6.2.2 analysis is on a dataset that has correlated 

explanatory variables and residuals in addition to biased residuals 

(although they are normally distributed) under a  low multicollinearity 

structure. Next, Section 6.2.3 explores the impact of the 

independence/dependence assumption discussed in Section 5.3 using the 

eigenvalues of the product matrix (the low multicollinearity scenario).

Finally, Section 6.2.4 examines the independence/dependence assumption 

when multicollinearity is high.

In all simulations, 5000 random samples of size 10 were taken from a 

population of 1000. Summary statistics on the MSE and the beta vector 

were collected for the each of the estimators. The MSE of each was 

compared-the mean, the standard error, the minimum, and the maximum. 

Additionally, how closely each approximated the beta vector was analyzed- 

the mean, the standard error, the minimum, and the maximum.
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6.2.1 Mean Squared Error: UNKIND Data

Aggregate MSE statistics for each of the estimators is reported in 

Table 6.11 and subsets of that table follow.

TABLE 6.11
AGGREGATE STATISTICS FOR THE UNKIND 

PSEUDORANDOM DATASET

E stim ato r MSE S tandard  Error M inim um M axim um

I/M 7 .56 5.39 0.47 58 .94
ADHOC 12.69 6.00 1.10 60 .95

PEM 13.62 8.28 0.43 84 .64
PCM 13.73 8.16 0.52 84 .64
a s 13.96 8.05 0.53 84 .6 4

The first notable statistic is that the mean MSE of OLS exceeds every 

other estimator. Table 6.12 ranks those results and identifies INDIV/MATRIX 

as having the lowest MSE on average, ADHOC has the next lowest, PEM 

nudges PCM, and OLS has the highest value.

TABLE 6.12 
MEAN SQUARED ERROR UNKIND 

PSEUDORANDOM DATASET

I/M  ADHOC PEM PCM O S

7 . 5 6 _______________ 1 2 . 6 9 ____________ 1 3 . 6 2 _____________ 1 3 . 7 6 ______________1 3 . 9 6
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Table 6.13 contains rankings by standard errors. Consistent with the 

rankings by maximum value, the order is INDIV/MATRIX, ADHOC, OLS, 

PCM, and PEM.

TABLE 6.13 
STANDARD ERROR OF MSE UNKIND 

PSEUDORANDOM DATASET

I/M  ADHOC OLS PCM PEM

5 .3 9 ____________ 6 .0 0 _____________8 .0 5 ____________ 8 .1 6 ____________ 8 .2 8

It is also interesting to examine the minimum (Table 6.14) and 

maximum (Table 6.15) MSE values. Since the minimums vary little 

compared to the maximums, judgment by this statistic is not as noteworthy 

but the ranking is: INDIV/MATRIX achieved the lowest, PEM attains a 

minimum almost as low as INDIV/MATRIX, while OLS, PCM and OLS have 

nearly equal values. Comparing maximums, INDIV/MATRIX has the lowest, 

ADHOC follows, and the remaining three methods tie for the highest 

maximum.

TABLE 6.14
MINIMUM MSE UNKIND PSEUDORANDOM DATASET

PEM I/M  PCM OLS ADHOC

0 .4 3 _____________0 .4 7 ____________ 0 .5 2 ____________ 0 .5 3 ____________ 1 .1 0
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TABLE 6.15
MAXIMUM MSE UNKIND PSEUDORANDOM DATASET

5 8 .9 4

I/M ADHOC

6 0 . 9 5

PEM

8 4 .6 4 8 4 .6 4

PCM OLS

8 4 .6 4

Clearly, INDIV and MATRIX are more desirable based upon any 

single of these statistics and in the aggregate as well. ADHOC dominates 

the remaining estimators except for the minimum value, but there is little 

difference among all six on this basis anyway. The maximum values of 

ADHOC and INDIV/MATRIX are similar and suggest that they may be 

minimax in this setting. Labeling any one of the remaining three as better 

than the other two is arguable, but it is obvious that they are dominated by 

the three new PER shrinkage estimators.

A graphical summary of the simulations is presented next in Figure

6.1. Assume that the MSE statistic is distributed as a £ 2 with 

v = («  -  k -  m)  degrees of freedom where n is the sample size, k is 

the number of restrictions imposed by the column dimension of X,  and m is 

the number of linear restrictions imposed by the estimation method. In these 

simulations n = 10, k = 3, and max (m  = 2 ) (since if m -  3 all 

elements of A would be 0). As m increases causing v to decrease, the 

distribution compresses so that for a given MSE more of the probability 

density is located close to the optimum value of 0.

Theoretically, determining the number of linear restrictions each 

estimator places on the eigenvector matrix A can be found merely by 

counting the number of 0 eigenvalues, but practically this necessitates
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deciding what value is so small that it is essentially equal to 0. That can be 

avoided by assuming the worse case (m = 2) and then making 

comparisons.

1

MSE l/M = 7.56

MSE ADHOC = 12.69df = 7

MSE OLS = 13.96df = 6

df = 5

0
in in 00o>

FIGURE 6.1 
CHI-SQUARE DISTRIBUTIONS 

OF MEAN SQUARED ERROR: UNKIND PSEUDORANDOM DATASET

population size = 1,000 sample size = 10 experiment size = 5,000

However, since MSE is also changing, a reasonable way to compare

the estimator set is to find out how much of the distribution is contained

between the mean estimate and 0. Table 6.16a reports the probability

densities close to zero under different assumptions about the degrees of

freedom. Since OLS imposes no additional restrictions than k , the MSE of

OLS possesses a £ 2 distribution with 7 degrees of freedom, whereas the

MSE of INDIV/MATRIX has as few as 5 degrees of freedom. Regardless of

105



www.manaraa.com

the distribution, a  lower probability is a positive characteristic because the 

MSE value is closer to 0. For this experiment, for OLS 94.8% of the 

probability density is left of the mean value 13.96. Assuming that ADHOC 

and INDIV/MATRIX have only 5 degrees of freedom, for ADHOC 97.4% and 

for INDIV/MATRIX only 81.8% is to the left of their mean 12.69 and 7.56, 

respectively. If the most severe assumption is relaxed, with 6 degrees of 

freedom ADHOC improves to 95.2% and INDIV/MATRIX to 72.8%.

TABLE 6.16a 
P(0 < X < MSE)

UNDER DIFFERENT RESTRICTION ASSUMPTIONS

Method I/M ADHOC PEM PCM OLS
MSE 7.56 12.69 13.62 13.73 13.96

df = 7,

oiiE

P(0<X<MSE) .627 .920 .942 .944 .948

df = 6, m = 1

P(0<X<MSE) .728 .952 .966 .967 .970

df = 5,

CMIIE

P(0<X<MSE) .818 .974 .982 .983 .984

Another way to evaluate the outcome of the experiment is to calculate 

the distance of each mean MSE estimate from 0 in terms of its standard 

deviation s 13 as listed in Table 6.16b. By that standard, the OLS value is 

3.73 s from 0 and, with 5/6 degrees of freedom, respectively ADHOC and 

INDIV/MATRIX are 4.01/3.67 s and 2.39/2.18 s from 0.

13The standard deviation of a = -y Var ( ) =  V2v.
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TABLE 6.16b 
DISTANCE FROM 0 TO MEAN MSE 

IN STANDARD DEVIATIONS 5

Method Standard I/M ADHOC OLS
MSE Error 7.56 12.69 13.96

df s #of s
7 3.74 2.02 S 3.39 S 3.73 S

6 3.46 2.18 S 4.01 S -
5 3.16 2.39 S 3.67 S -

6.2.2 The Beta Vector

Turning to an evaluation of the beta vectors, refer first to Table 6.17 

and the corresponding Figure 6.2.

TABLE 6.17 
AGGREGATE STATISTICS FOR BETA 1

Estimator Mean Standard Error Minimum Maximum

ADHOC 2.191 3.622 -22 .71 38.28

True Beta 2.608

I/M 3.072 5.608 -2 3 .9 0 44.07

PCM 5.495 8.982 -3 2 .3 2 63.51

PEM 5.800 9.304 -3 2 .3 2 63.51

OLS 5.936 9.552 -3 2 .3 2 63.51

107



www.manaraa.com

ADHOC
mean = 2.191True Beta 1 = 2.608

I/M  
mean = 3.072OLS,PCMUND,PEMUND

o> CO co ooo o
CM

CO
CM

CO
CM

00 in CM o m 00
B eta 1

™ V a l u e s  

FIGURE 6.2
DISTRIBUTION OF BETA 1 FOR ALL ESTIMATORS

Noting that the true population beta was fixed as  2.608, once again 

ADHOC and INDIV/MATRIX are far superior to any of the other three in their 

ability to estimate p l. Using the statistics in Tables 6.18 and 6.19, Figures

6.3a and 6.3b provide a visual comparison of the distributions of OLS with 

ADHOC and OLS with INDIV/MATRIX respectively. Not only is the average 

estimate of /J, closer for both than for OLS, the graphs show the amount of

each distribution within one OLS standard error of the true value 2.608. 

Whereas OLS has only 65.3% within that range, for ADHOC 99.1%, or 

nearly all of it, is within that range while INDIV/MATRIX accumulated 91% 

within that range.
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TABLE 6.18
MEAN OF BETA 1

ADHOC
2.191

True Beta I/M  PCM PEM 

2.608 3.072 5.495 5.800
a s

5.936

TABLE 6.19 
STANDARD ERROR BETA 1

ADHOC I/M  PCM PEM a s
3.622 5.608 8.982 9.304 9.552
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-1 STANDARD DEVIATION 
[2.608 - 9.552 = -6.940]

+1 STANDARD DEVIATION
[2.608 + 9.552 = 12.160]

True Beta = 2.608

I/M Beta = 3.072

OLS Beta = 5.936

-6.94 12.16

P(OLS) = .653

P(l/M) = .910

OLS

I/M

Beta 1 Values

FIGURE 6.3a 
BETA 1: PROBABILITY VOLUME WITHIN 

1 OLS STANDARD ERROR OF THE TRUE MEAN
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-1 STANDARD DEVIATION 
[2.608 - 9.552 = -6.940]

+1 STANDARD DEVIATION
[2.608 + 9.552 = 12.160]

ADHOC Beta = 2.190

True Beta = 2.608

OLS Beta = 5.936

12.16-6.94

P(OLS) = .653

P(ADHOC) = .991

GLS

ADHOC

Beta 1 Values

FIGURE 6.3b 
BETA 1: PROBABILITY VOLUME WITHIN 

1 OLS STANDARD ERROR OF THE TRUE MEAN
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Tables 6.20, the minimum estimate of fa, and 6.21, the maximum

estimate, are worth noting. Both ADHOC and INDIV/MATRIX produce 

estimates of /?, characterized by a smaller range that do their competitors.

TABLE 6.20 MINIMUM BETA 1 
UNKIND PSEUDORANDOM DATA

ADHOC

- 2 2 .7 1

I/M  PEM PCM 

- 2 3 .9 0  - 3 2 .3 2  - 3 2 .3 2

OLS

- 3 2 .3 2

TABLE 6.21 MAXIMUM BETA 1 
UNKIND PSEUDORANDOM DATA

ADHOC I/M  PEM PCM OLS

3 8 .2 8 4 4 .0 7  6 3 .5 0 5  6 3 .5 0 5 6 3 .5 0 5

While the results for the estimates of p 2 and @3 obviously favor 

ADHOC and INDIV/MATRIX, the outcomes are not as striking as for fa.

Tables 6.22 and 6.23 contain the aggregate statistics that are represented in 

Figures 6.4 and 6.5, corresponding to fa  and P3 respectively.

An examination of the Table 6.22 and Figure 6.4 reveals that none 

were good point estimators of /?2. but ADHOC and INDIV/MATRIX had

smaller standard errors once again.

Table 6.22 and Figure 6.5 represent /?3. Note that no estimator is in 

any sense "close" to fa  but ADHOC and INDIV/MATRIX again exhibit the 

characteristic of small standard errors.
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TABLE 6.22
AGGREGATE STATISTICS FOR BETA 2

E stim ato r Mean S tan d ard  Error M inim um M axim um

ADHOC 1 .3 2 7 3 .3 8 1 - 3 0 .8 4 1 2 4 .5 2 1

I/M 1 .4 9 0 5 .6 0 8 -38 .311 30 .7 8 2

True Beta 2 .1 9 9

OLS 2 .6 4 9 .1 9 7 - 6 2 .1 5 9 4 3 .5 9 1

PEM 2 .6 7 3 8 .9 6 3 - 6 2 .1 5 9 4 3 .5 9 1

PCM 2 .7 5 3 8 .6 6 0 - 6 2 .1 5 9 4 3 .5 9 1

ADHOC 
m ean  = 1.327

True Beta 2 = 2.199

I/M  
m ean  = 1.49

OLS,PCM,PEM

o> o00 o 00<0 (O
T  Beta 2
"  V a l u e s

FIGURE 6.4
DISTRIBUTION OF BETA 2 FOR ALL ESTIMATORS

113



www.manaraa.com

TABLE 6.23
AGGREGATE STATISTICS FOR BETA 3

E stim ato r Mean S tandard  Error M inim um M axim um

I/M 0 .4 1 1 4 .5 7 9 -4 1 .8 4 7 2 9 .3 8 6

ADHOC 0 .7 1 2 2 .9 3 1 -3 6 .0 9 8 2 4 .7 3 8

OLS 0 .8 9 6 8 .2 7 7 -6 0 .2 0 7 3 7 .4 9 4

PEM 1 .0 2 8 8 .0 5 3 -6 0 .2 0 7 3 7 .4 9 4

PCM 1 .1 7 3 7 .8 0 8 -6 0 .2 0 7 3 7 .4 9 4

True Beta 2 .9 2 2

ADHOC 
m ean  = .712

True B eta 3 = 2.922

m ean = .411
OLS, PCM, PEM

CO CM CM CM in COo> <o CO o CO o>
B eta 3

w V a l u e s

FIGURE 6.5
DISTRIBUTION OF BETA 3 FOR ALL ESTIMATORS 

For all three parameters, ADHOC and INDIV/MATRIX have a  tighter 

distribution about the population parameter. Indeed, it is this ability to
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concentrate a larger amount of the probability distribution closer to the true 

parameter rather than the likelihood, however small, of estimating it 

precisely, that makes biased estimators more attractive than unbiased 

estimators.

6.2.3 Low Multicollinearity

Product Matrix (X'X) Eigenvalues

*1 *2 *3
835.722 95.097 77.3592

Separate analysis was done (LMI) so that independence between X  

and e  could be assumed (with different seeds for X,  /?, and e) and then

the independence assumption (LMD) was violated by using the same seed 

for each. Aggregate MSE statistics for each of the estimators are reported in 

Table 6.24.
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TABLE 6.24 
AGGREGATE STATISTICS 

FOR THE PSEUDORANDOM DATASET LMI AND LMD

Independence
E stim ato r MSE S tandard  Error M inim um M axim um

PEM 1 .5 9 0 .7 6 0 .1 0 8 .2 6

PCM 1 .6 2 1 .01 0 .0 5 1 2 .6 6

I/M 1 .6 7 0 .9 8 0 .0 6 1 2 .1 0

OLS 1 .7 6 1 .0 4 0 .0 7 1 2 .6 6

ADHOC 1 .9 6 0 .7 7 0 .3 1 1 0 .0 5

Dependence
E stim ato r MSE S tandard  Error M inim um M axim um

PEM 1 .1 3 0 .6 1 0 .0 5 9 .5 7

PCM 1 .4 6 0 .8 7 0 .0 9 1 0 .0 3

I/M 1 .5 5 0 .8 7 0 .0 8 9 .8 5

OLS 1 .5 9 0 .9 1 0 .1 2 1 0 .0 6

ADHOC 1 .7 6 0 .6 7 0 .3 9 7 .0 3

By assumption, the discrepancy among the empirical mean squared 

errors of the competing estimators is not large and between assumptions, 

the relative position of the estimators is the same in both cases. The new 

PER form of the Mundlak estimator had the lowest MSE in both cases (easily 

the lowest for LMD) followed by PCM, INDIV/MATRIX, OLS (which were 

essentially even), and ADHOC was the largest with some separation from 

the others.

Turning attention to other statistics, the distribution of the estimates of 

both ADHOC and INDIV/MATRIX fare better than OLS while PEM again is 

impressive. The minimum estimates of MSE for four are very similar except
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for the relatively large value of ADHOC. Offsetting ADHOC's large minimum 

is its very small maximum, followed by PEM, INDIV/MATRIX, PCM, and OLS.

The statistics just presented definitely favor the principal elements 

estimator PEM in terms of average MSE and standard errors combined-- 

however, the unbounded risk characteristic of the pre-test estimator is a 

caution against accepting it too willingly.

The analysis of the beta vector here will not be as detailed as above 

with the UNKIND dataset. Referring to Table 6.25, under the independence 

assumption, INDIV/MATRIX obtained a  very precise estimate of Beta while 

OLS, being unbiased, performed well relative to the others. When there is 

dependence between the residuals and the explanatory variables all 

methods obtained close estimates.

However, even in this low multicollinearity scenario OLS has larger 

variances than the others. While INDIV/MATRIX estimated the LMI Beta 

closely, the error was much larger than PCM, PEM, and ADHOC. For LMD 

where all estimators were quite close to the true parameter, ADHOC, PCM 

and PEM had significantly smaller errors.
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TABLE 6.25 
LOW MULTICOLLINEARITY 

AGGREGATE STATISTICS FOR BETA 1

Independence
E stim ato r Mean S tandard  Error M inim um M aximum

PCM 1 .7 6 0 .3 8 0 .2 5 8 .3 2

PEM 1.91 0 .6 4

oG
O1 8 .6 6

ADHOC 2 .1 2 0 .6 8 - 1 .1 3 8 .8 4

I/M 2 .8 2 7 1 .1 5 - 2 .8 2 1 2 .8 5

True Beta 2 .8 3 3

as 2 .9 9 1 .1 9 - 2 .9 2 1 3 .2 1

Dependence
E stim ato r Mean S tandard  Error M inim um M axim um

ADHOC 2 .5 8 2 0 .5 4 - 0 .1 5 6 .4 8

PCM 2 .5 8 4 0 .4 7 0 .7 1 4 .0 6

PEM 2 .5 9 0 .5 2 - 0 .0 8 9 .0 4

True BETA 2 .6 0 8

I/M 2 .7 9 1 .0 5 - 1 .4 4 9 .0 1

as 2 .9 2 1 .0 9 - 1 . 4 9 9 .3 9

Qualitatively, the results were the same for /J2and /?314- So, under 

the assumption of independence, INDIV/MATRIX is a better estimator than 

OLS both by accuracy and distribution. Relaxing that assumption shows that 

all of the methods are accurate with PEM, PCM, and ADHOC being favored 

both on accuracy and error distribution.

14S ee  Appendix A.4, Tables A4.1 and A4.2
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6.2.4 High Multicollinearity

Another pair of simulations on the independence/dependence 

assumption was performed under a high multicollinearity scenario (HMI and 

HMD) by altering the distribution of the trace of eigenvalue matrix in a similar 

fashion as was done with the Gorman and Toman data.

Redistributed Eigenvalues

^

1000 8 0.1782

Focusing on the relative performance of the estimator set under high 

multicollinearity conditions in Table 6.26, PEM, PCM, and ADHOC are 

clearly better then INDIV/MATRIX or OLS with or without independence. In 

both instances, the three have much smaller MSE's and errors. The two 

most striking outcomes are the similarity of the INDIV/MATRIX estimates to 

OLS and the very small maximum value for ADHOC.
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TABLE 6.26 
AGGREGATE STATISTICS 

FOR THE PSEUDORANDOM DATASET HMI AND HMD

Independence
E stim a to r MSE S tan d ard  Error M inim um M axim um

PEM 1.49 0.85 0.08 12.66
PCM 1.55 0.96 0.05 12.66

ADHOC 1.59 0.86 0.07 6.20
I/M 1.757 1.04 0.07 12.65
a s 1.758 1.04 0.07 12.66

Dependence
E stim a to r MSE S tandard  Error M inim um M axim um

PEM 1 .1 4 0 .6 4 0 .0 2 9 .9 2

PCM 1 .2 7 0 .8 0 0 .0 9 1 0 .0 3

ADHOC 1 .3 7 0 .7 9 0 .0 7 5 .0 0

I/M 1 .5 9 0 .9 1 0 .1 2 1 0 .0 6

OLS 1 .5 9 0 .9 1 0 .1 1 1 0 .0 6

Comparing LMI, LMD, HMI, and HMD, the only major change is the 

improved performance of ADHOC in a high multicollinearity situation. The 

other four have roughly the same MSE and standard errors under both 

assumptions and their relative ranking is the same as well. However, the 

ADHOC MSE dropped about 20% in both cases while the errors actually 

rose; hence, the amount of bias was reduced. Based on these simulations, 

the unbounded-risk estimators PEM and PCM are the best performers, 

ADHOC is consistent if small standard errors are the goal, and 

INDIV/MATRIX and OLS are consistent by both criteria with INDIV/MATRIX 

having slightly lower MSE and standard errors in the low multicollinearity 

case.
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Table 6.27 lists the results for j3v  Under independence, 

INDIV/MATRIX and OLS obtained the closest estimates with ADHOC being 

closer than PCM and PEM. With dependence, all estimators overstated True 

BETA, but the relative performance switched from the independence 

situation because PCM. PEM, and ADHOC were closer than INDIV/MATRIX 

and OLS.

In both scenarios, PCM, PEM, and ADHOC had consistently smaller 

standard errors than INDIV/MATRIX and OLS.

In these simulations, ADHOC could be deemed the best choice since 

it had very small errors while it was able to estimate True BETA relatively 

precisely
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TABLE 6.27 
HIGH MULTICOLLINEARITY 

AGGREGATE STATISTICS FOR BETA 1

Independence
E stim a to r Mean S tandard  Error M inim um M axim um

PCM 2 .1 5 0 .8 4 - 0 .8 4 1 3 .0 1

PEM 2 .2 9 0 .9 3

o001 1 3 .2 1

ADHOC 2 .4 1 0 .8 1 - 0 .7 6 1 1 .7 8

True BETA 2 .8 3

I/M 2 .9 9 0 1 .2 0 - 2 .9 2 1 3 .2 1

as 2 .9 9 2 1 .2 0 - 2 .9 2 1 3 .2 1

Dependence
E stim a to r Mean S tandard  Error M inim um M axim um

True BETA 2 .6 0 8

PCM 2 .6 3 0 .5 5 0 .2 4 9 .0 4

PEM 2 .6 4 0 .6 2 - 0 .3 1 9 .3 9

ADHOC 2 .7 2 0 .5 9 0 .0 7 7 .7 0

I/M 2 .9 2 1 .0 9 - 1 .4 9 9 .3 8

as 2 .9 2 1 .0 9 « <o 9 .3 9

The results for /?2and /?315 were slightly different. Under 

independence INDIV/MATRIX and OLS estimated True BETA well but still 

had large errors; ADHOC was closer than PEM or PCM. Under 

dependence, ADHOC was slightly more accurate than PEM or PCM 

whereas INDIV/MATRIX and OLS became the most accurate estimators of 

True BETA.

1sS ee  Appendix A.4, Tables A.4.3 and A.4.4.
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Comparing and summarizing both multicollinearity situations, there 

does not appear to be an overall 'winner1. PEM, PCM, and ADHOC produce 

consistently small standard errors, but there is variability in their capability to 

estimate the parameter precisely.
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CHAPTER 7

CONCLUSION AND ADDITIONAL TOPICS

7.1 Conclusion

The most significant contribution of this dissertation is that a very 

general, unifying regression structure called principal elements regression 

was introduced. The manner in which it embraces such traditional 

regression techniques as restricted least squares, principal components, 

and factor analysis was developed analytically. In addition, it was also 

demonstrated that PER includes the relatively new fractional approach of 

Lee as  a special case. Any method that imposes a weighting scheme on the 

individual elements of the eigenvector matrix is a member of the PER class 

of estimators.

Second, it was also shown that PER forms other than PCR can 

produce a  variance less than or equal to PCR with an equal number of 

eigenvector elements zeroed or deleted. Further, new PER forms entitled 

ADHOC, INDIV, and MATRIX quite possibly can produce a lower variance 

with fewer eigenvector elements modulated (subrestrictions imposed). 

Indeed, these new estimators do not require the harsh constraint of zeroing 

or deleting principal elements as does PCR, but can selectively shrink 

individual elements.
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The third contribution demonstrated the inadequacy of the traditional 

comparative statistics of linear restrictions and rank and subsequently 

defined the more informative terms modulation, subrestriction, and mode. 

The two traditional notions, while being useful for some biased regression 

techniques, actually conceal an estimators' impact on the elements of the 

eigenvector matrix. On the other hand, modulation accounts for differential 

treatment of the individual elements-subrestriction reflects the matrix-wide 

constraints more accurately than does restriction and the mode quantifies 

the number of unrestricted elements. A single restriction on a column of a 

matrix having k elements equals 1 regardless of how many elements are 

retained--(0  o r l o r . . .  or k )--resulting in a rank of (k  -  1), whereas the 

mode of the matrix could range from ( k2 -  k ) to k 2.

Since a  sample usually suffers from ill-conditioning due to 

multicollinearity, and since multicollinearity is intractable, attention is 

diverted to loss functions such as mean squared error. Thus, a subtle shift in 

focus from sample conditions to population characteristics occurs. Monte 

carlo experiments are an attempt to determine the population characteristics 

and not explicitly eliminate the multicollinearity in the sample data. The 

experimental portion of this work utilized monte carlo simulations on two 

datasets to explore the empirical risks of an estimator set.

The new PER forms ADHOC, INDIV, and MATRIX are a category of 

shrinkage estimators. So, they were evaluated in high multicollinearity 

experiments as part of an estimator set that included a positive-part Stein- 

rule and a  truncated Stein-rule that were conditioned with each of the six 

base estimators OLS, PEM, PCM, ADHOC, INDIV, and MATRIX. Those
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simulations on the Gorman and Toman dataset showed a clear tendency for 

ADHOC, INDIV, and MATRIX to produce relatively low mean squared error 

coincident with relatively low standard errors. As well, these three PER 

forms produced impressive results when the components of the beta vector 

were inspected-there was a tendency toward smaller standard errors for the 

individual parameter estimates which meant they were able to locate a 

larger amount of the probability distribution closer to the true coefficient.

Low multicollinearity conditions were simulated on the Gorman and 

Toman data by dividing the trace of the eigenvalue matrix equally among the 

ten eigenvalues. Predictably, subsequent analysis demonstrated, with one 

exception, that the estimators were unable to reduce mean squared error 

below the OLS amount. The exception, ADHOC, produced an exceptionally 

low MSE.

Uncertainty always lingers even from thousands of monte carlo 

outcomes derived from a sample. This dissertation circumvented that 

limitation by declaring a pseudorandom dataset to be a population and 

proceeded with an analysis of the relative performance of six estimators, 

OLS, PCM, PEM, ADHOC, INDIV, and MATRIX. It would be too much to 

expect for one estimator to dominate the others so general conclusions of 

superiority are elusive.

With the UNKIND data where certain assumptions were violated, 

ADHOC and INDIV/MATRIX had the smallest MSE's and standard errors. In 

low multicollinearity conditions, ADHOC consistently had small errors but the 

largest MSE whether the explanatory variables and residuals were 

independent or dependent. INDIV/MATRIX was slightly better than OLS in
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terms of both MSE and errors while the principal elements Mundlak form 

was the best overall. When high multicollinearity was imposed on the data, 

the MSE of ADHOC improved considerably while retaining low standard 

errors. On the other hand, INDIV/MATRIX changed little compared to OLS 

while PEM retained its superiority.

The small dimensions of the pseudorandom data allowed a more 

thorough examination of individual parameter estimates than did the 

Gorman and Toman data. ADHOC and INDIV/MATRIX parameter estimates 

of the problematic UNKIND data were the most accurate for /?, and 

degenerated for /?2 and /?3. Yet, the standard errors remained consistently

small. It is worth noting that OLS was a relatively inaccurate estimator of all 

Pi and had consistently large errors as well. The simulations with

multicollinearity scenarios produced ambiguous results. With independence 

INDIV/MATRIX and OLS were the best estimators of all /J, and ADHOC was

slightly less accurate. With dependence, there was less distinction among 

the three. Again, ADHOC had consistently small standard errors while 

INDIV/MATRIX was similar to OLS.

Despite the disparity of results, in all simulations on both datasets, a 

feature of ADHOC was small standard errors, a feature of OLS was large 

errors, and statistics on the other estimators were discordant.
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7.2 Additional Topics

In the theory and practice of econometrics the model, the method and 
the data are all interdependent links in the research chain. Seldom, 
however, are the economic and statistical models correctly specified, 
the data free of measurement or specification errors, the methods or 
decision rules used in estimation "optimal" and the inferences free of 
distortions. Judge and Bock (1978)

The practice of using monte carlo simulations allows pre-testing of 

estimators so that the researcher can make an informed choice about which 

estimation technique appears to work best in a particular scenario. 

Computer technology has evolved to the state where simulations can be 

performed on desktop models that would have strained mainframes as few 

as ten or fifteen years ago. Indeed, this environment presents opportunities 

for econometricians to be creative in the presence of obstacles like scarce 

data, poorly conditioned data, and small samples.

Judge and Yancey (1986) on inequality estimation: "What we did not 

know then, and what took over a  decade to sort out, was how to write the 

estimator so that the underlying sampling properties could be determined." 

There are two points; one, progress is not always instantaneous because 

the most efficient way to approach a problem may be elusive and two, a new 

idea like principal elements regression that is so broad must be explored on 

an indeterminable number of fronts. In the future, the principal elements 

framework must be examined on the same grounds as other regression 

techniques introduced over past years (for example, the theoretical 

properties).
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Heretofore, research has focused on reducing the dimensions of the 

eigenvector matrix in an effort to mitigate the effects of multicollinearity. If the 

sum of the information in the matrix was normalized to 1, then the usual 

approach can be thought of as reducing that value to less than 1. But the 

problem may not be the amount of information. The confounding condition 

called multicollinearity is a  structural problem present in the sample, so 

perhaps a more fruitful approach would be to retain all of the information and 

merely reallocate it, being guided by the information in the principal 

elements. Recall that prediction along the plane of coilinearity can be 

beneficial so it might be feasible to reorient the data along that plane.

Even the quadratic loss function as the objective function is suspect.

It is rather benign and ubiquitous-perhaps because of its widespread 

popularity its appropriateness is seldom questioned.

An illustration:

Suppose that a  researcher is developing an estimation technique to 

guide a firm that wishes to maximize profits. Suppose the price relationship 

is

P = A )  +  PiQ  ■

its estimate is

P =  Po +  PiQ  ■

the profit function is
n  = TR -  TC 

=  p Q -  / ( G ) ,
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and its estimate is

n = PoQ + Ac2 -  /(C)-

The true loss to the firm is the difference between desired profits and 

estimated profits

Loss = n  -  f t

and the risk is expected loss 

Risk = -  f t )

= e ( p 0 -  A,)s + b ( p ,  -  A)e2 - E { f ( Q ) )  + /(g) .

Compare that to mean squared error loss

MSE =  E ( p 0 -  A ,) ’ + £()3, -  f t ) '  ■

In this example, the correct criterion for estimator selection should be the 

expected loss in profits and not the expected prediction loss.

Pursuing this line of research does not depend on principal elements 

regression, but this dissertation has drawn attention to the correct design of 

all aspects of an experiment. Depending upon the evaluation criterion, an 

estimator that performs favorably in one case may not be as desirable under 

a different standard. With the computing power currently available, it is 

compelling for a researcher to use monte carlo evaluation techniques to 

evaluate several competing estimators as well as experiment with different 

loss functions.
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APPENDIX

A.1 The Ordering Matrix A 

The following two tables list the principal elements ( afj j X j ) first and
O

then the ordering matrix A that reflects the relative magnitude of each 

element of the Gorman and Toman data.

Principal Elements Matrix

8.74E-9 1E-8 0.00001 0.00068 0.00296 0.00241 5.68E-7 0.0145 0.00009 0.00056
7.65E-7 4.9E-7 0.00023 0.00086 0.00019 0.00015 0.00006 0.00014 0.00002 2.02E-6
372E-13 454E-13 2.82E-8 9.27E-7 924E-14 1.82E-6 0.00024 0.01576 6.24652 0.08711
373E-12 23E-11 1.22E-8 5.22E-6 2.4E-6 5.05E-7 0.17021 0.00748 0.00306 0.00041
518E-14 811E-14 1.19E-8 5.96E-8 1.1 E-7 5.36E-7 9.22E-6 0.00197 0.0018 145.193
333E-12 182E-12 9.07E-7 0.00001 0.00005 0.00006 0.00159 0.7122 0.14346 0.35482
1.03E-6 7.42E-7 0.00014 0.00058 0.00023 0.00048 0.00022 0.00019 0.00074 0.00053
2.38E-9 1.23E-8 0.00003 0.00006 0.00257 0.00537 0.00009 0.00025 0.00089 0.0011
7.77E-8 0.00003 1.63E-8 3.09E-7 3.6E-7 5.44E-7 9.64E-8 2.55E-7 9.23E-9 7.73E-6
6.07E-9 942E-12 0.00063 0.00056 0.00014 0.00171 0.00004 0.00018 0.00016 0.00003
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88 86 57 24

O
The Ordering Matrix A 

13 15 69 @ 45 28
67 73 34 22 37 41 49 44 55 62
97 96 81 65 98 63 33 @ a 0
92 94 84 60 61 72 5 l10l 12 31
100 99 85 80 77 71 58 16 17 0
93 95 66 56 50 48 19 a @ 0
64 68 43 26 35 30 36 38 23 29
90 83 52 47 14 11 46 32 21 20
79 53 82 75 74 70 78 76 87 59
89 91 25 27 42 18 51 39 40 54

This table emphasizes the way the principal elements regression form 

can exploit its flexibility compared to principal elements regression. The 

principal elements estimator that zeroed the last column would only capture 

three of the smallest variance elements. A PER form that also selected ten 

elements would focus on those that are emphasized.
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A.2 Eigenvector Matrices

The following are examples of eigenvector matrices. The 3x3 

matrices are from a single iteration on the pseudorandom data and are 

presented first because their small dimension makes them easier to 

examine than those from the Gorman and Toman data that follow.

Eigenvectors of X'X

0.64316 -0.7657 -0.0092
0.57076 0.48741 -0.6608
0.51047 0.41973 0.7505

Eigenvectors of ADHOC

0.62141 -0.1107 -0.0001
0.55147 0.07048 -0.0083
0.49321 0.06069 0.00948

Eigenvectors of INDIV/MATRIX

0.81387 -0.0181 -0.0038
0.48393 -0.0108 -0.0023
0.31467 -0.007 -0.0015
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Eigenvectors of PCM

0.64316 0 0
0.57076 0 0
0.51047 0 0

Eigenvectors of PEM

0.64316 0 -0.0092
0.57076 0 0
0.51047 0 0

The following tables are examples of the eigenvector matrices from 

the same iteration on the Gorman and Toman data. Note that PCM zeroed 9 

components (90 elements) while PEM only zeroed 10 elements.

Eigenvectors of X'X

0.06797 -0.0182 -0.1067 0.49678 0.69368 0.48621 0.00181 0.13882 0.00365 0.00196
0.63575 -0.127 -0.4723 -0.5566 0.17728 0.12229 0.01788 -0.0136 0.00184 0.00012
0.00444 -0.0012 -0.0052 0.01832 0.00004 0.01337 -0.0372 -0.1447 0.98819 0.02446
0.01403 -0.0027 0.0034 0.04347 -0.0197 0.00704 0.9935 -0.0997 0.02186 -0.0017
0.00165 -0.0005 0.00336 -0.0046 -0.0042 -0.0073 0.00731 0.05111 -0.0168 0.99847
0.01326 -0.0024 0.02938 -0.0737 -0.0869 -0.0753 0.09598 0.97275 0.14976 -0.0494
0.73843 -0.1562 0.36582 0.45868 -0.1931 -0.2172 -0.0358 -0.0157 -0.0107 -0.0019
0.03547 -0.0201 -0.1736 0.1447 -0.647 0.7264 -0.0222 0.01826 -0.0118 0.00275
0.20262 0.97913 -0.0039 0.01058 -0.0076 0.00731 -0.0007 0.00058 0.00004 0.00023
0.05665 -0.0056 0.77505 -0.452 0.15314 0.40964 0.0148 -0.0153 0.00496 -0.0004
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Eigenvectors of ADHOC

0.04619 -0.0023 •0.0008 0.01784 0.2332
0.43206 -0.0159 -0.0036 -0.02 0.0596
0.00301 -0.0002 -399E-7 0.00066 0.00001
0.00954 -0.0003 0.00003 0.00156 -0.0066
0.00112 -0.0001 0.00003 -0.0002 -0.0014
0.00901 -0.0003 0.00023 -0.0026 -0.0292
0.50184 -0.0196 0.00281 0.01647 -0.0649
0.02411 -0.0025 -0.0013 0.0052 -0.2175
0.1377 0.12268 -302E-7 0.00038 -0.0026
0.0385 -0.0007 0.00596 -0.0162 0.05148

Eigenvectors of

19.9934 -1.2965 -0.0513 -0.0694 0.17142
65.34702 -0.3467 -0.0137 -0.0186 0.04584
52.339 -3.3939 -0.1342 -0.1816 0.44874
42.1134 -2.7309 -0.108 -0.1461 0.36107
1051.19 -68.165 -2.6958 -3.6469 9.01255
9.71739 -0.6301 -0.0249 -0.0337 0.08331
-9.4205 0.61088 0.02416 0.03268 -0.0808
-4.3305 0.28081 0.01111 0.01502 -0.0371
-0.2747 0.01781 0.0007 0.00095 -0.0024
3.80518 -0.2467 -0.0098 -0.0132 0.03262

0.0091 0.00033 0.00819 0.00001 0.00021
0.00229 0.00329 -0.0008 6.23E-6 0.00001
0.00025 -0.0068 -0.0085 0.00335 0.00266
0.00013 0.18279 -0.0059 0.00007 -0.0002
•0.0001 0.00135 0.00301 -567E-7 0.10857
-0.0014 0.01766 0.05736 0.00051 -0.0054
-0.0041 -0.0066 -0.0009 -364E-7 -0.0002
0.0136 -0.0041 0.00108 -4E-5 0.0003
0.00014 -0.0001 0.00003 1.29E-7 0.00003
0.00767 0.00272 -0.0009 0.00002 -465E-7

INDIV/MATRIX

0.02585 0.0216 0.00545 0.00044 0.00055
0.00691 0.00578 0.00146 0.00012 0.00015
0.06767 0.05653 0.01426 0.00114 0.00143
0.05445 0.04549 0.01148 0.00092 0.00115
1.35917 1.13541 0.2865 0.02288 0.02874
0.01256 0.0105 0.00265 0.00021 0.00027
-0.0122 -0.0102 -0.0026 -0.0002 -0.0003
-0.0056 -0.0047 -0.0012 -0.0001 -0.0001
-0.0004 -0.0003 -0.0001 -598E-8 -751E-8
0.00492 0.00411 0.00104 0.00008 0.0001
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Eigenvectors of PCM

0.06797 0 0 0 0 0 0 0 0 0

0.63575 0 0 0 0 0 0 0 0 0

0.00444 0 0 0 0 0 0 0 0 0

0.01403 0 0 0 0 0 0 0 0 0

0.00165 0 0 0 0 0 0 0 0 0

0.01326 0 0 0 0 0 0 0 0 0

0.73843 0 0 0 0 0 0 0 0 0

0.03547 0 0 0 0 0 0 0 0 0

0.20262 0 0 0 0 0 0 0 0 0

0.05665 0 0 0 0 0 0 0 0 0

Eigenvectors of PEM

0.06797 -0.0182 -0.1067 0 0.69368 0 0.00181 0.13882 0.00365 0.00196

0.63575 -0.127 0 0 0.17728 0.12229 0.01788 -0.0136 0.00184 0.00012

0.00444 -0.0012 -0.0052 0.01832 0.00004 0.01337 -0.0372 -0.1447 0 0.02446

0.01403 -0.0027 0.0034 0.04347 -0.0197 0.00704 0.9935 -0.0997 0.02186 -0.0017

0.00165 -0.0005 0.00336 -0.0046 -0.0042 -0.0073 0.00731 0.05111 -0.0168 0

0.01326 -0.0024 0.02938 -0.0737 •0.0869 -0.0753 0.09598 0 0 -0.0494

0.73843 -0.1562 0 0.45868 -0.1931 -0.2172 0.0358 -0.0157 -0.0107 -0.0019

0.03547 -0.0201 -0.1736 0.1447 -0.647 0 0.0222 0.01826 -0.0118 0.00275

0.20262 0 -0.0039 0.01058 -0.0076 0.00731 0.0007 0.00058 0.00004 0.00023

0.05665 -0.0056 0 -0.452 0.15314 0 0.0148 -0.0153 0.00496 -0.0004
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X2
79
83
82
78
86
82
88
77
74
84
75
72
76
82
77
73
72
69
80
79
76
70
71
71
71
72
74
73
69
72
82
83
82
85
77
76

A.3 Gorman and Toman Data

X3 X4 X5 X6 X7 X8 X9 X10 Y
0.57 2.50 0.19 1.422 91.7 5.00 26 4.1 66
0.50 1.52 0.19 1.642 87.8 4.49 7 2.7 120
0.68 1.69 0.22 2.310 87.0 8.46 26 1.6 293
0.51 1.21 0.18 1.150 87.0 1.77 6 4.3 35
0.51 1.45 0.20 1.661 88.4 5.53 13 2.6 160
0.49 1.22 0.20 1.799 87.6 3.61 3 0.1 106
0.50 1.20 0.23 1.892 88.9 4.16 6 3.7 104
0.55 2.91 0.17 1.031 90.2 2.86 3 3.5 37
0.50 1.84 0.20 1.348 88.8 5.13 10 5.3 84
0.53 1.43 0.22 1.638 91.8 3.49 10 3.9 132
0.63 1.45 0.19 1.305 92.2 3.45 11 4.4 71
0.60 1.59 0.19 1.335 90.2 3.41 12 4.1 123
0.62 1.47 0.19 1.180 90.5 4.14 8 6.3 67
0.54 1.64 0.20 1.370 89.9 7.80 26 6.6 141
0.65 1.93 0.18 1.031 91.4 4.65 28 6.6 77
0.59 1.58 0.20 1.347 91.4 5.03 13 11.9 125
0.78 1.97 0.09 0.641 83.2 9.31 4 0.2 52
0.84 1.31 0.12 0.618 85.3 6.69 35 0.6 25
0.51 2.87 0.22 1.731 87.5 5.12 10 5.8 102
0.54 1.46 0.16 1.381 89.8 7.97 75 3.8 206
0.51 1.92 0.17 1.466 88.8 3.65 19 5.4 190
0.48 1.65 0.23 1.994 90.2 4.17 16 7.6 270
0.43 1.96 0.23 2.131 89.1 5.49 6 6.0 390
0.43 1.51 0.22 2.204 88.8 4.29 30 10.4 458
0.44 1.62 0.26 2.101 90.3 1.53 17 10.7 129
0.42 2.05 0.24 2.063 87.6 7.66 12 9.4 268
0.44 1.04 0.24 1.909 88.5 2.56 9 17.9 188
0.42 1.78 0.22 2.017 87.2 5.48 33 10.7 310
0.42 1.90 0.23 2.011 86.4 2.06 22 12.9 260
0.46 2.02 0.17 1.589 89.4 1.83 50 12.5 190
0.47 1.76 0.19 1.706 90.1 0.65 185 6.5 164
0.50 1.31 0.19 1.674 94.9 3.12 28 11.7 138
0.47 1.34 0.20 1.667 90.3 5.13 4 9.6 202
0.63 1.86 0.22 1.962 92.2 3.16 24 8.5 102
0.62 1.51 0.24 1.959 95.0 1.33 15 16.6 160
0.62 1.92 0.24 1.592 95.5 2.13 22 8.8 101
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A.4 Pseudorandom Data

The following SAS/IML code generated the pseudorandom data:

cx = 1; cb = 3; cr = 9; n = 10; t = 1000; k = 3;
seedx = 3 ; seedb = 7 ; seedr = 11; 
xdimen = j(t,k,seedx);

xpop = cx * uniform(xdimen); 
bdimen = j(k,1,seedb);

beta = cb * uniform(bdimen); 
rdimen = j (t,1,seedr);

resid = ((cr * normal(rdimen)) - .44772) / 9.03432; 
ypop = xpop * beta + resid;

The following SAS/IML code randomly selected 10 observations:

s_size = 10;
s_obs = int((99 * uniform(s_size)))' + 1; 
r = rank(s_obs); 
terml = s_obs;
s_obs(|,rank(s_obs)|) = terml; 

use sasdata.modldata; 
read point s_obs into dupe; 
y = dupe( ,1|); 
x = dupe( ,{2 3 4}|);

A sample of the data:

X__________ XI_________ X2_________ X2_________ r e s id u a ls

5 . 8 8 7 6 0 . 7 5 8 9 0 . 8 2 2 6 0 . 0 6 5 2 0 . 2 6 4 7
8 . 7 2 1 6 0 . 9 1 3 8 0 . 8 8 2 8 0 . 6 3 7 3 3 . 1 4 2 3
- 3 . 7 5 2 6 0 . 1 1 6 2 0 . 2 4 7 7 0 . 9 4 0 8 - 4 . 4 3 8 1
1 2 . 4 2 4 5 0 . 9 9 4 7 0 . 8 3 0 4 0 . 6 0 0 0 7 . 0 4 4 2
1 0 . 7 2 3 2 0 . 5 3 0 4 0 . 1 2 7 7 0 . 5 4 1 4 9 . 9 6 3 1
0 . 9 2 5 7 0 . 0 0 5 8 0 . 9 0 4 8 0 . 5 1 1 3 - 4 . 0 1 6 7
6 . 4 0 7 2 0 . 9 3 5 5 0 . 8 0 5 4 0 . 4 8 3 0 1 . 1 2 1 3
1 0 . 8 7 6 6 0 . 8 3 1 7 0 . 9 0 4 0 0 . 7 2 1 2 5 . 3 3 2 6
1 . 6 3 0 4 0 . 7 1 3 3 0 . 4 0 7 9 0 . 8 1 2 5 - 0 . 7 2 8 3
- 4 . 4 6 3 7 0 . 8 3 0 3 0 . 1 6 1 3 0 . 0 5 6 1 - 6 . 1 9 3 0
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TABLE A.4.1
LOW MULTICOLLINEARITY

AGGREGATE STATISTICS FOR BETA 2

Independence
E stim a to r Mean S tandard  Error Minimum Maximum

I/M 1 . 3 2 1 . 0 6 - 7 . 6 3 6 . 5 9

a s 1 . 4 0 1 . 1 3 - 7 . 9 7 6 . 8 5

True BETA 1 . 6 5

ACHOC 1 . 6 9 0 . 5 2 2 . 2 3 5 . 6 5

PEM 1.91 0 . 6 5 - 2 . 9 4 6 . 8 3

PCM 2 . 0 6 0 . 2 9 - 1 . 8 6 3 . 1 4

Dependence
E stim ato r Mean S tandard  Error Minimum Maximum

I/M 2 . 1 1 1 .01 - 4 . 9 2 6 . 5 0

a s 2 . 2 0 1 1 . 0 5 - 5 . 2 3 6 . 9 4

True BETA 2 . 1 9 9

ADH0C 2 . 3 3 0 . 5 0

CMCM1 4 . 9 7

PEM 2 . 5 0 0 . 4 9 - 1 . 2 9 5 . 2 2

PCM 2 . 5 2 0 . 4 2 0 . 7 2 4 . 0 6
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TABLE A.4.2
LOW MULTICOLLINEARITY

AGGREGATE STATISTICS FOR BETA 3

Independence
E stim ato r Mean S tandard  Error Minimum Maximum

True BETA 1 . 1 0

I /M 1.31 1 . 0 7 - 4 . 4 0 7 . 4 7

OLS 1 . 3 9 1 . 1 4 - 4 . 5 2 7 . 9 7

ADHOC 1 . 5 0 0 . 5 4 - 2 . 5 2 5 . 6 3

PEM 1 . 6 7 0 . 6 3 - 3 . 1 0 7 . 9 7

PCM 1 . 7 2 0 . 3 3 - 0 . 2 4 7 . 9 7

Dependence
E stim a to r Mean S tandard  Error Minimum Maximum

ADHOC 2 . 3 4 0 . 4 8 - 1 . 5 4 5 . 5 9

PCM 2 . 3 9 0 . 4 7 0 .5 1 3 . 9 3

PEM 2 . 4 0 0 . 5 3 - 3 . 8 0 5 . 5 9

I /M 2 . 5 0 0 . 9 0 - 4 . 5 5 6 . 3 8

OLS 2 . 6 2 0 . 9 4 - 4 . 6 5 6 . 7 1

True BETA 2 . 9 2

140



www.manaraa.com

TABLE A.4.3
HIGH MULTICOLLINEARITY

AGGREGATE STATISTICS FOR BETA 2

Independence
E stim ato r Mean S tandard  Error Minimum Maximum

I/M 1 . 4 0 4 1 . 1 3 - 7 . 9 6 6 . 8 5

OLS 1 . 4 0 5 1 . 1 3 - 7 . 9 7 6 . 8 5

True BETA 1 . 6 5

ADHOC 1 . 7 4 0 6 2 - 5 . 7 4 4 . 9 8

PEM 1 . 7 8 0 . 7 3 - 3 . 1 1 5 . 4 9

PCM 1 . 8 8 0 . 6 0 - 2 . 6 7 4 . 3 4

Dependence
E stim ato r Mean S tandard  Error Minimum Maximum

True BETA 2 . 1 9 9

I /M 2 . 2 0 1 . 0 5 - 5 . 2 3 6 . 9 4

OLS 2 . 2 0 1 . 0 5 - 5 . 2 3 6 . 9 3

ADHOC 2 .4 1 0 . 5 7 - 2 . 0 8 5 . 1 4

PEM 2 . 4 3 0 . 5 9 - 2 . 7 6 5 . 4 2

PCM 2 . 4 9 0 . 5 2 - 0 . 5 2 5 . 4 2
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TABLE A.4.4
HIGH MULTICOLLINEARITY

AGGREGATE STATISTICS FOR BETA 3

Independence
E stim a to r Mean S tan d ard  Error Minimum Maximum

True BETA 1.10
I/M 1 . 3 9 1 . 1 4 - 4 . 5 2 7 . 9 6

as 1 . 3 9 1 . 1 4 - 4 . 5 2 7 . 9 7

ADHOC 1 . 5 0 0 . 7 0 - 3 . 9 1 6 . 2 5

PEM 1.51 0 . 8 0 - 5 . 0 5 7 . 9 7

PCM 1 . 5 8 0 . 7 0 - 5 . 0 5 7 . 9 7

Dependence
E stim ato r Mean S tandard  Error Minimum Maximum

PCM 2 . 4 2 0 . 5 5 - 3 . 8 0 5 . 4 8

PEM 2 . 4 3 0 .6 1 - 3 . 3 2 5 . 4 9

ADHOC 2 . 4 7 0 . 5 6 - 3 . 0 5 5 . 3 9

I /M 2 .6 1 0 . 9 4 - 4 . 6 5 6 .7 1

OLS 2 . 6 2 0 . 9 4 - 4 . 6 5 6 . 7 1

True BETA 2 . 9 2
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